Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Time series clustering in large data sets

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F11%3A00170236" target="_blank" >RIV/62156489:43110/11:00170236 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216305:26210/11:PU94835

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Time series clustering in large data sets

  • Popis výsledku v původním jazyce

    The clustering of time series is a widely researched area. There are many methods for dealing with this task. We are actually using the Self-organizing map (SOM) with the unsupervised learning algorithm for clustering of time series. After the first experiment (Fejfar, Weinlichová, Šťastný, 2009) it seems that the whole concept of the clustering algorithm is correct but that we have to perform time series clustering on much larger dataset to obtain more accurate results and to find the correlation between configured parameters and results more precisely. The second requirement arose in a need for a well-defined evaluation of results. It seems useful to use sound recordings as instances of time series again. There are many recordings to use in digital libraries, many interesting features and patterns can be found in this area. We are searching for recordings with the similar development of information density in this experiment. It can be used for musical form investigation, cover songs

  • Název v anglickém jazyce

    Time series clustering in large data sets

  • Popis výsledku anglicky

    The clustering of time series is a widely researched area. There are many methods for dealing with this task. We are actually using the Self-organizing map (SOM) with the unsupervised learning algorithm for clustering of time series. After the first experiment (Fejfar, Weinlichová, Šťastný, 2009) it seems that the whole concept of the clustering algorithm is correct but that we have to perform time series clustering on much larger dataset to obtain more accurate results and to find the correlation between configured parameters and results more precisely. The second requirement arose in a need for a well-defined evaluation of results. It seems useful to use sound recordings as instances of time series again. There are many recordings to use in digital libraries, many interesting features and patterns can be found in this area. We are searching for recordings with the similar development of information density in this experiment. It can be used for musical form investigation, cover songs

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    IN - Informatika

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    Z - Vyzkumny zamer (s odkazem do CEZ)

Ostatní

  • Rok uplatnění

    2011

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Universitatis agriculturae et silviculturae Mendelianae Brunensis : Acta of Mendel University of agriculture and forestry Brno = Acta Mendelovy zemědělské a lesnické univerzity v Brně

  • ISSN

    1211-8516

  • e-ISSN

  • Svazek periodika

    59

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    6

  • Strana od-do

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus