Artificial Neural Networks Numerical Forecasting of Economic Time Series
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F11%3A00170460" target="_blank" >RIV/62156489:43110/11:00170460 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Neural Networks Numerical Forecasting of Economic Time Series
Popis výsledku v původním jazyce
Current global market is driven by many factors such as the information age, the time and amount of information distributed by many data channels. It is practically impossible to analyze all kinds of incoming information flows and transform them to datawith classical methods. New requirements call for using other methods. Artificial neural networks once trained on patterns can be used for forecasting and they are able to work with extremely big data sets in reasonable time. Traditionally this task is solved by using statistical analysis - first a time-series model is constructed and then statistical prediction algorithms are applied to it in order to obtain future values. The common point for both methods is the learning process from samples of past data or learning from the past. From many of the uncommon points the input conditions for the model creation and length of the time series pattern set could be pointed. On one hand very sophisticated statistical methods exist that have str
Název v anglickém jazyce
Artificial Neural Networks Numerical Forecasting of Economic Time Series
Popis výsledku anglicky
Current global market is driven by many factors such as the information age, the time and amount of information distributed by many data channels. It is practically impossible to analyze all kinds of incoming information flows and transform them to datawith classical methods. New requirements call for using other methods. Artificial neural networks once trained on patterns can be used for forecasting and they are able to work with extremely big data sets in reasonable time. Traditionally this task is solved by using statistical analysis - first a time-series model is constructed and then statistical prediction algorithms are applied to it in order to obtain future values. The common point for both methods is the learning process from samples of past data or learning from the past. From many of the uncommon points the input conditions for the model creation and length of the time series pattern set could be pointed. On one hand very sophisticated statistical methods exist that have str
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Artificial Neural Networks - Application
ISBN
978-953-307-188-6
Počet stran výsledku
16
Strana od-do
13-28
Počet stran knihy
586
Název nakladatele
InTech
Místo vydání
Riejka, Croatia
Kód UT WoS kapitoly
—