Data-driven multi-step energy consumption forecasting with complex seasonality patterns and exogenous variables: Model accuracy assessment in change point neighborhoods
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254657" target="_blank" >RIV/61989100:27240/24:10254657 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1568494623011171?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494623011171?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.asoc.2023.111099" target="_blank" >10.1016/j.asoc.2023.111099</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Data-driven multi-step energy consumption forecasting with complex seasonality patterns and exogenous variables: Model accuracy assessment in change point neighborhoods
Popis výsledku v původním jazyce
Energy forecasting tools became a significant scope of application for time series modeling due to the specific challenges in energy trading - the forecast of consumption for the whole next trading day based on the limited data availability at the forecast origin. The research article addresses the scope of high-frequency time series data, multiple seasonal patterns, exogenous variables, and nonstationary properties in a multi-step forecast horizon tasks. The contribution of the research is the introduction of a machine- and deep-learning-based data-driven approach for multi-output time series forecasting and mainly an introduction of the new evaluation metric called the Change Point Neighborhood Error (CPNE). The purpose of the metric is to provide a distinctive measure of forecasting accuracy of the proposed models in parts of the time series where a change point or a data drift emerges. The experimental findings indicate a notable improvement in accuracy achieved by machine and deep learning models, resulting in a substantial reduction of the mean absolute percentage error (MAPE) by approximately 45 % compared to the optimal statistical model across both datasets used, and also in terms of change point neighborhood error in comparison to statistical models due to their requirement for stationary data input. Deep learning models may be a viable alternative to machine learning approaches; however, deep learning models require long input sequences for accurate forecasting, whereas machine learning methods require shorter input sequences and can benefit more from feature engineering. (C) 2023 Elsevier B.V.
Název v anglickém jazyce
Data-driven multi-step energy consumption forecasting with complex seasonality patterns and exogenous variables: Model accuracy assessment in change point neighborhoods
Popis výsledku anglicky
Energy forecasting tools became a significant scope of application for time series modeling due to the specific challenges in energy trading - the forecast of consumption for the whole next trading day based on the limited data availability at the forecast origin. The research article addresses the scope of high-frequency time series data, multiple seasonal patterns, exogenous variables, and nonstationary properties in a multi-step forecast horizon tasks. The contribution of the research is the introduction of a machine- and deep-learning-based data-driven approach for multi-output time series forecasting and mainly an introduction of the new evaluation metric called the Change Point Neighborhood Error (CPNE). The purpose of the metric is to provide a distinctive measure of forecasting accuracy of the proposed models in parts of the time series where a change point or a data drift emerges. The experimental findings indicate a notable improvement in accuracy achieved by machine and deep learning models, resulting in a substantial reduction of the mean absolute percentage error (MAPE) by approximately 45 % compared to the optimal statistical model across both datasets used, and also in terms of change point neighborhood error in comparison to statistical models due to their requirement for stationary data input. Deep learning models may be a viable alternative to machine learning approaches; however, deep learning models require long input sequences for accurate forecasting, whereas machine learning methods require shorter input sequences and can benefit more from feature engineering. (C) 2023 Elsevier B.V.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GF21-33574K" target="_blank" >GF21-33574K: Celoživotní strojové učení z datových proudů</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Soft Computing
ISSN
1568-4946
e-ISSN
1872-9681
Svazek periodika
150
Číslo periodika v rámci svazku
January 2024
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
26
Strana od-do
nestránkováno
Kód UT WoS článku
001128397500001
EID výsledku v databázi Scopus
2-s2.0-85178663383