Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Data-driven multi-step energy consumption forecasting with complex seasonality patterns and exogenous variables: Model accuracy assessment in change point neighborhoods

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F24%3A10254657" target="_blank" >RIV/61989100:27240/24:10254657 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S1568494623011171?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1568494623011171?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.asoc.2023.111099" target="_blank" >10.1016/j.asoc.2023.111099</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Data-driven multi-step energy consumption forecasting with complex seasonality patterns and exogenous variables: Model accuracy assessment in change point neighborhoods

  • Popis výsledku v původním jazyce

    Energy forecasting tools became a significant scope of application for time series modeling due to the specific challenges in energy trading - the forecast of consumption for the whole next trading day based on the limited data availability at the forecast origin. The research article addresses the scope of high-frequency time series data, multiple seasonal patterns, exogenous variables, and nonstationary properties in a multi-step forecast horizon tasks. The contribution of the research is the introduction of a machine- and deep-learning-based data-driven approach for multi-output time series forecasting and mainly an introduction of the new evaluation metric called the Change Point Neighborhood Error (CPNE). The purpose of the metric is to provide a distinctive measure of forecasting accuracy of the proposed models in parts of the time series where a change point or a data drift emerges. The experimental findings indicate a notable improvement in accuracy achieved by machine and deep learning models, resulting in a substantial reduction of the mean absolute percentage error (MAPE) by approximately 45 % compared to the optimal statistical model across both datasets used, and also in terms of change point neighborhood error in comparison to statistical models due to their requirement for stationary data input. Deep learning models may be a viable alternative to machine learning approaches; however, deep learning models require long input sequences for accurate forecasting, whereas machine learning methods require shorter input sequences and can benefit more from feature engineering. (C) 2023 Elsevier B.V.

  • Název v anglickém jazyce

    Data-driven multi-step energy consumption forecasting with complex seasonality patterns and exogenous variables: Model accuracy assessment in change point neighborhoods

  • Popis výsledku anglicky

    Energy forecasting tools became a significant scope of application for time series modeling due to the specific challenges in energy trading - the forecast of consumption for the whole next trading day based on the limited data availability at the forecast origin. The research article addresses the scope of high-frequency time series data, multiple seasonal patterns, exogenous variables, and nonstationary properties in a multi-step forecast horizon tasks. The contribution of the research is the introduction of a machine- and deep-learning-based data-driven approach for multi-output time series forecasting and mainly an introduction of the new evaluation metric called the Change Point Neighborhood Error (CPNE). The purpose of the metric is to provide a distinctive measure of forecasting accuracy of the proposed models in parts of the time series where a change point or a data drift emerges. The experimental findings indicate a notable improvement in accuracy achieved by machine and deep learning models, resulting in a substantial reduction of the mean absolute percentage error (MAPE) by approximately 45 % compared to the optimal statistical model across both datasets used, and also in terms of change point neighborhood error in comparison to statistical models due to their requirement for stationary data input. Deep learning models may be a viable alternative to machine learning approaches; however, deep learning models require long input sequences for accurate forecasting, whereas machine learning methods require shorter input sequences and can benefit more from feature engineering. (C) 2023 Elsevier B.V.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GF21-33574K" target="_blank" >GF21-33574K: Celoživotní strojové učení z datových proudů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Soft Computing

  • ISSN

    1568-4946

  • e-ISSN

    1872-9681

  • Svazek periodika

    150

  • Číslo periodika v rámci svazku

    January 2024

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    26

  • Strana od-do

    nestránkováno

  • Kód UT WoS článku

    001128397500001

  • EID výsledku v databázi Scopus

    2-s2.0-85178663383