Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27510%2F18%3A10236389" target="_blank" >RIV/61989100:27510/18:10236389 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s40747-017-0056-6" target="_blank" >http://dx.doi.org/10.1007/s40747-017-0056-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s40747-017-0056-6" target="_blank" >10.1007/s40747-017-0056-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics
Popis výsledku v původním jazyce
First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news.
Název v anglickém jazyce
Forecasting of financial data: a novel fuzzy logic neural network based on error-correction concept and statistics
Popis výsledku anglicky
First, this paper investigates the effect of good and bad news on volatility in the BUX return time series using asymmetric ARCH models. Then, the accuracy of forecasting models based on statistical (stochastic), machine learning methods, and soft/granular RBF network is investigated. To forecast the high-frequency financial data, we apply statistical ARMA and asymmetric GARCH-class models. A novel RBF network architecture is proposed based on incorporation of an error-correction mechanism, which improves forecasting ability of feed-forward neural networks. These proposed modelling approaches and SVM models are applied to predict the high-frequency time series of the BUX stock index. We found that it is possible to enhance forecast accuracy and achieve significant risk reduction in managerial decision making by applying intelligent forecasting models based on latest information technologies. On the other hand, we showed that statistical GARCH-class models can identify the presence of leverage effects, and react to the good and bad news.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
V - Vyzkumna aktivita podporovana z jinych verejnych zdroju
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Complex & Intelligent Systems
ISSN
2199-4536
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
95-104
Kód UT WoS článku
000432236000002
EID výsledku v databázi Scopus
—