Automatic Generation of Programs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F11%3A00173261" target="_blank" >RIV/62156489:43110/11:00173261 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic Generation of Programs
Popis výsledku v původním jazyce
In this paper we describe two-level grammatical evolution (TLGE), which is a new method, designed to solve prediction tasks on agricultural and economical data. This method belongs to the group of artificial intelligence algorithms together with many other algorithms -- such as artificial neural networks, expert systems, etc. This method is based on the combination of two existing evolutionary algorithms -- grammatical evolution and differential evolution. Both methods are based on genetic algorithms. The paper describes general properties of genetic algorithms, which form the base of the methods used. The core part of the paper is the description of modified grammatical evolution algorithm (grammatical evolution with backward processing) together withthe description of two-level grammatical evolution. Although this method is applicable to different types of problems, this paper focuses solely on applications to non-linear regression problems. The section Applications and methods of e
Název v anglickém jazyce
Automatic Generation of Programs
Popis výsledku anglicky
In this paper we describe two-level grammatical evolution (TLGE), which is a new method, designed to solve prediction tasks on agricultural and economical data. This method belongs to the group of artificial intelligence algorithms together with many other algorithms -- such as artificial neural networks, expert systems, etc. This method is based on the combination of two existing evolutionary algorithms -- grammatical evolution and differential evolution. Both methods are based on genetic algorithms. The paper describes general properties of genetic algorithms, which form the base of the methods used. The core part of the paper is the description of modified grammatical evolution algorithm (grammatical evolution with backward processing) together withthe description of two-level grammatical evolution. Although this method is applicable to different types of problems, this paper focuses solely on applications to non-linear regression problems. The section Applications and methods of e
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Computer Science and Engineering
ISBN
978-953-307-173-2
Počet stran výsledku
20
Strana od-do
17-36
Počet stran knihy
462
Název nakladatele
InTech
Místo vydání
Rijeka
Kód UT WoS kapitoly
—