Exploration into power of homogeneity and serial correlation tests
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F13%3A00201067" target="_blank" >RIV/62156489:43110/13:00201067 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.11118/actaun201361041129" target="_blank" >http://dx.doi.org/10.11118/actaun201361041129</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.11118/actaun201361041129" target="_blank" >10.11118/actaun201361041129</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exploration into power of homogeneity and serial correlation tests
Popis výsledku v původním jazyce
Verification of regression models is primarily based on analysis of error terms and constitutes one of the most important steps in applied regression analysis. In cross-sectional models, the error terms are typically heteroskedastic, while in time seriesregressions the errors are often affected by serial correlation. Consequently, in this paper, we focus on Monte Carlo simulations applied to explore the power of several tests of homogeneity and tests for presence of autocorrelation. In the past decades, the computational power has increased significantly to allow the benefit of simulation from exact distributions, which are not defined explicitly. We will discuss 1) testing of homogeneity for a given number of components in the exponential mixture approximated by subpopulations and 2) simulation of power in several commonly used tests of autocorrelation. For the first case, we consider exact likelihood ratio test (ELR) and exact likelihood ratio test against the alternative with two-c
Název v anglickém jazyce
Exploration into power of homogeneity and serial correlation tests
Popis výsledku anglicky
Verification of regression models is primarily based on analysis of error terms and constitutes one of the most important steps in applied regression analysis. In cross-sectional models, the error terms are typically heteroskedastic, while in time seriesregressions the errors are often affected by serial correlation. Consequently, in this paper, we focus on Monte Carlo simulations applied to explore the power of several tests of homogeneity and tests for presence of autocorrelation. In the past decades, the computational power has increased significantly to allow the benefit of simulation from exact distributions, which are not defined explicitly. We will discuss 1) testing of homogeneity for a given number of components in the exponential mixture approximated by subpopulations and 2) simulation of power in several commonly used tests of autocorrelation. For the first case, we consider exact likelihood ratio test (ELR) and exact likelihood ratio test against the alternative with two-c
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis
ISSN
1211-8516
e-ISSN
—
Svazek periodika
61
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
8
Strana od-do
1129-1136
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—