Revealing Groups of Semantically Close Textual Documents by Clustering: Problems and Possibilities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F15%3A43906670" target="_blank" >RIV/62156489:43110/15:43906670 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revealing Groups of Semantically Close Textual Documents by Clustering: Problems and Possibilities
Popis výsledku v původním jazyce
The chapter introduces clustering as a family of algorithms that can be successfully used to organize text documents into groups without prior knowledge of these groups. The chapter also demonstrates using unsupervised clustering to group large amount ofunlabeled textual data (customer reviews written informally in five natural languages) so it can be used later for further analysis. The attention is paid to the process of selecting clustering algorithms, their parameters, methods of data preprocessing, and to the methods of evaluating the results by a human expert with an assistance of computers, too. The feasibility has been demonstrated by a number of experiments with external evaluation using known labels and expert validation with an assistance of a computer. It has been found that it is possible to apply the same procedures, including clustering, cluster validation, and detection of topics and significant words for different natural languages with satisfactory results.
Název v anglickém jazyce
Revealing Groups of Semantically Close Textual Documents by Clustering: Problems and Possibilities
Popis výsledku anglicky
The chapter introduces clustering as a family of algorithms that can be successfully used to organize text documents into groups without prior knowledge of these groups. The chapter also demonstrates using unsupervised clustering to group large amount ofunlabeled textual data (customer reviews written informally in five natural languages) so it can be used later for further analysis. The attention is paid to the process of selecting clustering algorithms, their parameters, methods of data preprocessing, and to the methods of evaluating the results by a human expert with an assistance of computers, too. The feasibility has been demonstrated by a number of experiments with external evaluation using known labels and expert validation with an assistance of a computer. It has been found that it is possible to apply the same procedures, including clustering, cluster validation, and detection of topics and significant words for different natural languages with satisfactory results.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Modern Computational Models of Semantic Discovery in Natural Language
ISBN
978-1-4666-8690-8
Počet stran výsledku
41
Strana od-do
71-111
Počet stran knihy
334
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—