Revealing Groups of Semantically Close Textual Documents by Clustering: Problems and Possibilities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43910950" target="_blank" >RIV/62156489:43110/17:43910950 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.4018/978-1-5225-1759-7.ch081" target="_blank" >http://dx.doi.org/10.4018/978-1-5225-1759-7.ch081</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-5225-1759-7.ch081" target="_blank" >10.4018/978-1-5225-1759-7.ch081</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Revealing Groups of Semantically Close Textual Documents by Clustering: Problems and Possibilities
Popis výsledku v původním jazyce
The chapter introduces clustering as a family of algorithms that can be successfully used to organize text documents into groups without prior knowledge of these groups. The chapter also demonstrates using unsupervised clustering to group large amount of unlabeled textual data (customer reviews written informally in five natural languages) so it can be used later for further analysis. The attention is paid to the process of selecting clustering algorithms, their parameters, methods of data preprocessing, and to the methods of evaluating the results by a human expert with an assistance of computers, too. The feasibility has been demonstrated by a number of experiments with external evaluation using known labels and expert validation with an assistance of a computer. It has been found that it is possible to apply the same procedures, including clustering, cluster validation, and detection of topics and significant words for different natural languages with satisfactory results.
Název v anglickém jazyce
Revealing Groups of Semantically Close Textual Documents by Clustering: Problems and Possibilities
Popis výsledku anglicky
The chapter introduces clustering as a family of algorithms that can be successfully used to organize text documents into groups without prior knowledge of these groups. The chapter also demonstrates using unsupervised clustering to group large amount of unlabeled textual data (customer reviews written informally in five natural languages) so it can be used later for further analysis. The attention is paid to the process of selecting clustering algorithms, their parameters, methods of data preprocessing, and to the methods of evaluating the results by a human expert with an assistance of computers, too. The feasibility has been demonstrated by a number of experiments with external evaluation using known labels and expert validation with an assistance of a computer. It has been found that it is possible to apply the same procedures, including clustering, cluster validation, and detection of topics and significant words for different natural languages with satisfactory results.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Artificial Intelligence: Concepts, Methodologies, Tools, and Applications
ISBN
978-1-5225-1759-7
Počet stran výsledku
40
Strana od-do
1981-2020
Počet stran knihy
3048
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—