Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Discovering Opinions from Customers' Unstructured Textual Reviews Written in Different Natural Languages

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F15%3A43917471" target="_blank" >RIV/62156489:43110/15:43917471 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.4018/978-1-4666-6543-9.ch049" target="_blank" >https://doi.org/10.4018/978-1-4666-6543-9.ch049</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.4018/978-1-4666-6543-9.ch049" target="_blank" >10.4018/978-1-4666-6543-9.ch049</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Discovering Opinions from Customers' Unstructured Textual Reviews Written in Different Natural Languages

  • Popis výsledku v původním jazyce

    Gaining new and keeping existing clients or customers can be well-supported by creating and monitoring feedbacks: &quot;Are the customers satisfied? Can we improve our services?&quot; One of possible feedbacks is allowing the customers to freely write their reviews using a simple textual form. The more reviews that are available, the better knowledge can be acquired and applied to improving the service. However, very large data generated by collecting the reviews has to be processed automatically as humans usually cannot manage it within an acceptable time. The main question is &quot;Can a computer reveal an opinion core hidden in text reviews?&quot; It is a challenging task because the text is written in a natural language. This chapter presents a method based on the automatic extraction of expressions that are significant for specifying a review attitude to a given topic. The significant expressions are composed using significant words revealed in the documents. The significant words are selected by a decision-tree generator based on the entropy minimization. Words included in branches represent kernels of the significant expressions. The full expressions are composed of the significant words and words surrounding them in the original documents. The results are here demonstrated using large real-world multilingual data representing customers&apos; opinions concerning hotel accommodation booked on-line, and Internet shopping. Knowledge discovered in the reviews may subsequently serve for various marketing tasks.

  • Název v anglickém jazyce

    Discovering Opinions from Customers' Unstructured Textual Reviews Written in Different Natural Languages

  • Popis výsledku anglicky

    Gaining new and keeping existing clients or customers can be well-supported by creating and monitoring feedbacks: &quot;Are the customers satisfied? Can we improve our services?&quot; One of possible feedbacks is allowing the customers to freely write their reviews using a simple textual form. The more reviews that are available, the better knowledge can be acquired and applied to improving the service. However, very large data generated by collecting the reviews has to be processed automatically as humans usually cannot manage it within an acceptable time. The main question is &quot;Can a computer reveal an opinion core hidden in text reviews?&quot; It is a challenging task because the text is written in a natural language. This chapter presents a method based on the automatic extraction of expressions that are significant for specifying a review attitude to a given topic. The significant expressions are composed using significant words revealed in the documents. The significant words are selected by a decision-tree generator based on the entropy minimization. Words included in branches represent kernels of the significant expressions. The full expressions are composed of the significant words and words surrounding them in the original documents. The results are here demonstrated using large real-world multilingual data representing customers&apos; opinions concerning hotel accommodation booked on-line, and Internet shopping. Knowledge discovered in the reviews may subsequently serve for various marketing tasks.

Klasifikace

  • Druh

    C - Kapitola v odborné knize

  • CEP obor

  • OECD FORD obor

    50901 - Other social sciences

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název knihy nebo sborníku

    Hospitality, Travel, and Tourism: Concepts, Methodologies, Tools, and Applications

  • ISBN

    978-1-4666-6543-9

  • Počet stran výsledku

    26

  • Strana od-do

    834-859

  • Počet stran knihy

    1623

  • Název nakladatele

    IGI Global

  • Místo vydání

    Hershey

  • Kód UT WoS kapitoly

    000489991200050