Pseudomedian in robustification of Jarque-Bera test of normality
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43911797" target="_blank" >RIV/62156489:43110/17:43911797 - isvavai.cz</a>
Výsledek na webu
<a href="http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf" target="_blank" >http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Pseudomedian in robustification of Jarque-Bera test of normality
Popis výsledku v původním jazyce
The assumption of normal distribution of a random variable plays an important role in various fields of science. It is also one of the most common assumptions made in the development and use of the common statistical techniques such as t-test or F-test. It is necessary to verify the assumption of normality when solving practical tasks. Currently, the most popular omnibus test of normality for a general use is the Shapiro-Wilk test. The Jarque-Bera test is the most widely adopted omnibus test of normality in econometrics, finance and related fields. Finally, the Lilliefors test is a representative test based on the comparison of theoretical and empirical distribution function. As outliers in the data sets in the field of economics and finance are frequently present, the Jarque-Bera test is not sufficiently robust, since it is based on the classical characteristics of skewness and kurtosis and has a zero breakdown point. Consequently, the aim of this paper is to derive robust tests of normality that belong to the RT class tests using pseudomedian in the construction of test statistics, and to highlight the benefits of its use in testing normality in the datasets where outliers are present.
Název v anglickém jazyce
Pseudomedian in robustification of Jarque-Bera test of normality
Popis výsledku anglicky
The assumption of normal distribution of a random variable plays an important role in various fields of science. It is also one of the most common assumptions made in the development and use of the common statistical techniques such as t-test or F-test. It is necessary to verify the assumption of normality when solving practical tasks. Currently, the most popular omnibus test of normality for a general use is the Shapiro-Wilk test. The Jarque-Bera test is the most widely adopted omnibus test of normality in econometrics, finance and related fields. Finally, the Lilliefors test is a representative test based on the comparison of theoretical and empirical distribution function. As outliers in the data sets in the field of economics and finance are frequently present, the Jarque-Bera test is not sufficiently robust, since it is based on the classical characteristics of skewness and kurtosis and has a zero breakdown point. Consequently, the aim of this paper is to derive robust tests of normality that belong to the RT class tests using pseudomedian in the construction of test statistics, and to highlight the benefits of its use in testing normality in the datasets where outliers are present.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-07089S" target="_blank" >GA16-07089S: Robustní přístup testování normality chybového členu v ekonometrických modelech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2017: Conference Proceedings
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
738-743
Název nakladatele
Univerzita Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000427151400126