Examining Stock Price Movements on Prague Stock Exchange Using Text Classification
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43912416" target="_blank" >RIV/62156489:43110/17:43912416 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.17781/P002293" target="_blank" >http://dx.doi.org/10.17781/P002293</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.17781/P002293" target="_blank" >10.17781/P002293</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Examining Stock Price Movements on Prague Stock Exchange Using Text Classification
Popis výsledku v původním jazyce
The goal of the article was to examine the relationship between the content of text documents published on the Internet and the direction of movement of stock prices on the Prague Stock Exchange. The relationship was modeled by text classification. As data were used news articles and discussion posts on Czech websites and the value of the PX stock index and stock price of company CEZ. Document's class (plus/minus/constant) was determined by the relative price change that happened between the publication date of a document and the next working day. We achieved a high accuracy of 75% for classification of discussion posts, however the classification accuracy for news articles was about 60%. We tried both Binary (documents with constant class were discarded) and ternary classification - the former was in all cases more successful.
Název v anglickém jazyce
Examining Stock Price Movements on Prague Stock Exchange Using Text Classification
Popis výsledku anglicky
The goal of the article was to examine the relationship between the content of text documents published on the Internet and the direction of movement of stock prices on the Prague Stock Exchange. The relationship was modeled by text classification. As data were used news articles and discussion posts on Czech websites and the value of the PX stock index and stock price of company CEZ. Document's class (plus/minus/constant) was determined by the relative price change that happened between the publication date of a document and the next working day. We achieved a high accuracy of 75% for classification of discussion posts, however the classification accuracy for news articles was about 60%. We tried both Binary (documents with constant class were discarded) and ternary classification - the former was in all cases more successful.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of New Computer Architectures and Their Applications
ISSN
2412-3587
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
6
Strana od-do
8-13
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—