Text Classification Using Time Windows Applied to Stock Exchange
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F17%3A43912417" target="_blank" >RIV/62156489:43110/17:43912417 - isvavai.cz</a>
Výsledek na webu
<a href="http://sdiwc.net/digital-library/text-classification-using-time-windows-applied-to-stock-exchangern" target="_blank" >http://sdiwc.net/digital-library/text-classification-using-time-windows-applied-to-stock-exchangern</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Text Classification Using Time Windows Applied to Stock Exchange
Popis výsledku v původním jazyce
Each day, a lot of text data is generated. This data comes from various sources and may contain valuable information. In this article, we use text classification to discover if there is a connection between textual documents (specifically Facebook posts) and changes of the S&P 500 stock index. The index values and documents were divided into time windows according to the direction of the index value changes. In the first experiment, we used a batch processing approach to put the documents from all windows into one data set and a classification accuracy of 62% was achieved. In the second experiment, we used a data stream approach to divide documents into twelve data sets created from two neighboring windows and we achieved an accuracy of 68%. This indicates that posts, which companies write on their Facebook pages, are partially related to the performance of the stock index. Taking the concept change into account also enables better quantification of this relationship.
Název v anglickém jazyce
Text Classification Using Time Windows Applied to Stock Exchange
Popis výsledku anglicky
Each day, a lot of text data is generated. This data comes from various sources and may contain valuable information. In this article, we use text classification to discover if there is a connection between textual documents (specifically Facebook posts) and changes of the S&P 500 stock index. The index values and documents were divided into time windows according to the direction of the index value changes. In the first experiment, we used a batch processing approach to put the documents from all windows into one data set and a classification accuracy of 62% was achieved. In the second experiment, we used a data stream approach to divide documents into twelve data sets created from two neighboring windows and we achieved an accuracy of 68%. This indicates that posts, which companies write on their Facebook pages, are partially related to the performance of the stock index. Taking the concept change into account also enables better quantification of this relationship.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-26353S" target="_blank" >GA16-26353S: Sentiment a jeho vliv na akciové trhy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of New Computer Architectures and Their Applications
ISSN
2412-3587
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CN - Čínská lidová republika
Počet stran výsledku
6
Strana od-do
62-67
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—