Using Online Data in Predicting Stock Price Movements: Methodological and Practical Aspects
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F19%3A43913765" target="_blank" >RIV/62156489:43110/19:43913765 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4018/978-1-5225-5586-5.ch006" target="_blank" >https://doi.org/10.4018/978-1-5225-5586-5.ch006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4018/978-1-5225-5586-5.ch006" target="_blank" >10.4018/978-1-5225-5586-5.ch006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Using Online Data in Predicting Stock Price Movements: Methodological and Practical Aspects
Popis výsledku v původním jazyce
A lot of research has been focusing on incorporating online data into models of various phenomena. The chapter focuses on one specific problem coming from the domain of capital markets where the information contained in online environments is quite topical. The presented experiments were designed to reveal the association between online texts (from Yahoo! Finance, Facebook, and Twitter) and changes in stock prices of the corresponding companies. As the method for quantifying the association, machine learning-based classification was chosen. The experiments showed that the data preparation procedure had a substantial impact on the results. Thus, different stock price smoothing, the lags between the release of documents and related stock price changes, levels of a minimal stock price change, different weighting schemes for structured document representation, and classifiers were studied. The chapter also shows how to use currently available open source technologies to implement a system for accomplishing the task.
Název v anglickém jazyce
Using Online Data in Predicting Stock Price Movements: Methodological and Practical Aspects
Popis výsledku anglicky
A lot of research has been focusing on incorporating online data into models of various phenomena. The chapter focuses on one specific problem coming from the domain of capital markets where the information contained in online environments is quite topical. The presented experiments were designed to reveal the association between online texts (from Yahoo! Finance, Facebook, and Twitter) and changes in stock prices of the corresponding companies. As the method for quantifying the association, machine learning-based classification was chosen. The experiments showed that the data preparation procedure had a substantial impact on the results. Thus, different stock price smoothing, the lags between the release of documents and related stock price changes, levels of a minimal stock price change, different weighting schemes for structured document representation, and classifiers were studied. The chapter also shows how to use currently available open source technologies to implement a system for accomplishing the task.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-26353S" target="_blank" >GA16-26353S: Sentiment a jeho vliv na akciové trhy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Techno-Social Systems for Modern Economical and Governmental Infrastructures
ISBN
978-1-5225-5586-5
Počet stran výsledku
35
Strana od-do
125-159
Počet stran knihy
351
Název nakladatele
IGI Global
Místo vydání
Hershey
Kód UT WoS kapitoly
—