Machine Learning-Based Analysis of the Association Between Online Texts and Stock Price Movements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F18%3A43913611" target="_blank" >RIV/62156489:43110/18:43913611 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.4114/intartif.vol21iss61pp95-110" target="_blank" >https://doi.org/10.4114/intartif.vol21iss61pp95-110</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.4114/intartif.vol21iss61pp95-110" target="_blank" >10.4114/intartif.vol21iss61pp95-110</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Machine Learning-Based Analysis of the Association Between Online Texts and Stock Price Movements
Popis výsledku v původním jazyce
The paper presents the result of experiments that were designed with the goal of revealing the association between texts published in online environments (Yahoo! Finance, Facebook, and Twitter) and changes in stock prices of the corresponding companies at a micro level. The association between lexicon detected sentiment and stock price movements was not confirmed. It was, however, possible to reveal and quantify such association with the application of machine learning-based classification. From the experiments it was obvious that the data preparation procedure had a substantial impact on the results. Thus, different stock price smoothing, lags between the release of documents and related stock price changes, five levels of a minimal stock price change, three different weighting schemes for structured document representation, and six classifiers were studied. It has been shown that at least part of the movement of stock prices is associated with the textual content if a proper combination of processing parameters is selected.
Název v anglickém jazyce
Machine Learning-Based Analysis of the Association Between Online Texts and Stock Price Movements
Popis výsledku anglicky
The paper presents the result of experiments that were designed with the goal of revealing the association between texts published in online environments (Yahoo! Finance, Facebook, and Twitter) and changes in stock prices of the corresponding companies at a micro level. The association between lexicon detected sentiment and stock price movements was not confirmed. It was, however, possible to reveal and quantify such association with the application of machine learning-based classification. From the experiments it was obvious that the data preparation procedure had a substantial impact on the results. Thus, different stock price smoothing, lags between the release of documents and related stock price changes, five levels of a minimal stock price change, three different weighting schemes for structured document representation, and six classifiers were studied. It has been shown that at least part of the movement of stock prices is associated with the textual content if a proper combination of processing parameters is selected.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-26353S" target="_blank" >GA16-26353S: Sentiment a jeho vliv na akciové trhy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Inteligencia Artificial
ISSN
1137-3601
e-ISSN
—
Svazek periodika
21
Číslo periodika v rámci svazku
61
Stát vydavatele periodika
ES - Španělské království
Počet stran výsledku
16
Strana od-do
95-110
Kód UT WoS článku
000609005300007
EID výsledku v databázi Scopus
2-s2.0-85046842152