Automatic lane marking extraction from point cloud into polygon map layer
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F19%3A43914326" target="_blank" >RIV/62156489:43110/19:43914326 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/18:PU130002
Výsledek na webu
<a href="https://doi.org/10.1080/22797254.2018.1535837" target="_blank" >https://doi.org/10.1080/22797254.2018.1535837</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/22797254.2018.1535837" target="_blank" >10.1080/22797254.2018.1535837</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automatic lane marking extraction from point cloud into polygon map layer
Popis výsledku v původním jazyce
Optimization of road networks is a common concern worldwide, primarily for safety purposes. Because the extent of these networks is substantial, automation of their inventory is highly desirable. This paper concentrates on the road inventory process that is necessary for regular maintenance. The key part of our road marking detection and reconstruction is based on spanning tree usage. The spanning trees are obtained from alpha shapes of the detected road markings. The spanning trees application enables the reliable identification of the road markings and precise reconstruction of their contours even with noisy data. Our method processes the point cloud data obtained from LiDAR measurements, and provides a common vector layer with road lane polygons. Such a vector layer is stored in a common file format supported by the majority of geographical information systems, thus producing an output that can be conveniently used for decision-making based on the road inventory process.
Název v anglickém jazyce
Automatic lane marking extraction from point cloud into polygon map layer
Popis výsledku anglicky
Optimization of road networks is a common concern worldwide, primarily for safety purposes. Because the extent of these networks is substantial, automation of their inventory is highly desirable. This paper concentrates on the road inventory process that is necessary for regular maintenance. The key part of our road marking detection and reconstruction is based on spanning tree usage. The spanning trees are obtained from alpha shapes of the detected road markings. The spanning trees application enables the reliable identification of the road markings and precise reconstruction of their contours even with noisy data. Our method processes the point cloud data obtained from LiDAR measurements, and provides a common vector layer with road lane polygons. Such a vector layer is stored in a common file format supported by the majority of geographical information systems, thus producing an output that can be conveniently used for decision-making based on the road inventory process.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
European Journal of Remote Sensing
ISSN
2279-7254
e-ISSN
—
Svazek periodika
52
Číslo periodika v rámci svazku
S1
Stát vydavatele periodika
IT - Italská republika
Počet stran výsledku
14
Strana od-do
26-39
Kód UT WoS článku
000475928900004
EID výsledku v databázi Scopus
2-s2.0-85055685908