Acceleration of server-side image processing by client-side pre-processing in web application environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F19%3A43916303" target="_blank" >RIV/62156489:43110/19:43916303 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216305:26210/19:PU133026
Výsledek na webu
<a href="http://dx.doi.org/10.1109/TSP.2019.8768889" target="_blank" >http://dx.doi.org/10.1109/TSP.2019.8768889</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2019.8768889" target="_blank" >10.1109/TSP.2019.8768889</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acceleration of server-side image processing by client-side pre-processing in web application environment
Popis výsledku v původním jazyce
The goal of this paper is to verify whether the use of client-side TensorFlow.js, a WebGL-accelerated JavaScript library for machine learning, can accelerate the processing of common photos by computer vision cloud services, such as detection and recognition of specific features like age, sex, expression or specific people in the image. This acceleration is based on pre-processing the input image, namely detecting human faces, which greatly changes the amount of input data that need to be uploaded to the cloud service and thus the amount of uploaded data compared to the original photograph. The upload speed of Internet connection often is, in the case of computer vision cloud services, the bottleneck of the whole system. That's why decreasing the amount of uploaded data in time shorter than the difference between the total of upload and cloud service processing time of the original and the pre-processed image leads to acceleration.
Název v anglickém jazyce
Acceleration of server-side image processing by client-side pre-processing in web application environment
Popis výsledku anglicky
The goal of this paper is to verify whether the use of client-side TensorFlow.js, a WebGL-accelerated JavaScript library for machine learning, can accelerate the processing of common photos by computer vision cloud services, such as detection and recognition of specific features like age, sex, expression or specific people in the image. This acceleration is based on pre-processing the input image, namely detecting human faces, which greatly changes the amount of input data that need to be uploaded to the cloud service and thus the amount of uploaded data compared to the original photograph. The upload speed of Internet connection often is, in the case of computer vision cloud services, the bottleneck of the whole system. That's why decreasing the amount of uploaded data in time shorter than the difference between the total of upload and cloud service processing time of the original and the pre-processed image leads to acceleration.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
42nd International Conference on Telecommunications and Signal Processing (TSP)
ISBN
978-1-72811-864-2
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
127-130
Název nakladatele
IEEE-Institute of Electrical Electronics Engineers
Místo vydání
Piscataway
Místo konání akce
Budapešť
Datum konání akce
1. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000493442800028