Likelihood-Ratio Test and F-test for Two Exponential Means Equality: a Monte Carlo Power Exploration
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918268" target="_blank" >RIV/62156489:43110/20:43918268 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Likelihood-Ratio Test and F-test for Two Exponential Means Equality: a Monte Carlo Power Exploration
Popis výsledku v původním jazyce
In statistical practice, the exponential distribution is frequently evoked to explore problems of survival or utility times or in general, time to event scenarios. This study investigates power of statistical tests to verify equality of two exponential distributions: a traditional F-test and a likelihood-ratio test (LRT) in common and approximate variants. The tests were examined for power in both exact and bootstrapped forms. Two Monte Carlo simulations were set up to research the test power in response to the combined sample size, size of samples generated from the exponential distributions and mean ratio as a measure of the population means inequality. 15,000 MC runs were generated with additional 1,000 resampled data for the bootstrapped alternatives. The rejection rates generally increased with sample size, balanced samples and inequal means. Power was found inadequate for n 30 in all examined combinations. A similar power was found, when samples were balanced, although it turned divergent with more unbalanced data. The bootstrapped tests generally showed increased empirical test size relative to nominal = 0:05 and superior power over the exact tests for simulated combinations with greater means occurring in large samples.
Název v anglickém jazyce
Likelihood-Ratio Test and F-test for Two Exponential Means Equality: a Monte Carlo Power Exploration
Popis výsledku anglicky
In statistical practice, the exponential distribution is frequently evoked to explore problems of survival or utility times or in general, time to event scenarios. This study investigates power of statistical tests to verify equality of two exponential distributions: a traditional F-test and a likelihood-ratio test (LRT) in common and approximate variants. The tests were examined for power in both exact and bootstrapped forms. Two Monte Carlo simulations were set up to research the test power in response to the combined sample size, size of samples generated from the exponential distributions and mean ratio as a measure of the population means inequality. 15,000 MC runs were generated with additional 1,000 resampled data for the bootstrapped alternatives. The rejection rates generally increased with sample size, balanced samples and inequal means. Power was found inadequate for n 30 in all examined combinations. A similar power was found, when samples were balanced, although it turned divergent with more unbalanced data. The bootstrapped tests generally showed increased empirical test size relative to nominal = 0:05 and superior power over the exact tests for simulated combinations with greater means occurring in large samples.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2020: Conference Proceedings
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
11-17
Název nakladatele
Mendelova univerzita v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
9. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000668460800001