Estimation of Selected Production Functions Using Starting Parameters Given by Stochastic Funnel Algorithm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918274" target="_blank" >RIV/62156489:43110/20:43918274 - isvavai.cz</a>
Výsledek na webu
<a href="https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf" target="_blank" >https://mme2020.mendelu.cz/wcd/w-rek-mme/mme2020_conference_proceedings_final.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of Selected Production Functions Using Starting Parameters Given by Stochastic Funnel Algorithm
Popis výsledku v původním jazyce
In this paper we deal with the problem of finding starting parameters for numerical methods designed for estimation of nonlinear production functions. Appropriateness of these starting parameters has a major impact on success of inding stable final parameters estimation. Bad starting parameters can cause the estimate of production function unacceptable from an economic point of view, or divergence of the estimation iteration process. We are focused on two approaches of searching starting parameters: the first one is based on establishing 'self-starting' models and searching preliminary estimates systematically in grid or by random shooting. As the second approach we use so-called stochastic funnel algorithm. We verify deployment of this algorithm for production functions and extend its usage with the possibility of searching for negative parameters. To assess mentioned methods we provide simulation study based on selected production functions. Our results show that stochastic funnel algorithm is able to give starting parameters comparable to the tradition methods for the CES type production functions, and visibly better for the Sato production function.
Název v anglickém jazyce
Estimation of Selected Production Functions Using Starting Parameters Given by Stochastic Funnel Algorithm
Popis výsledku anglicky
In this paper we deal with the problem of finding starting parameters for numerical methods designed for estimation of nonlinear production functions. Appropriateness of these starting parameters has a major impact on success of inding stable final parameters estimation. Bad starting parameters can cause the estimate of production function unacceptable from an economic point of view, or divergence of the estimation iteration process. We are focused on two approaches of searching starting parameters: the first one is based on establishing 'self-starting' models and searching preliminary estimates systematically in grid or by random shooting. As the second approach we use so-called stochastic funnel algorithm. We verify deployment of this algorithm for production functions and extend its usage with the possibility of searching for negative parameters. To assess mentioned methods we provide simulation study based on selected production functions. Our results show that stochastic funnel algorithm is able to give starting parameters comparable to the tradition methods for the CES type production functions, and visibly better for the Sato production function.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics 2020: Conference Proceedings
ISBN
978-80-7509-734-7
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
630-635
Název nakladatele
Mendelova univerzita v Brně
Místo vydání
Brno
Místo konání akce
Brno
Datum konání akce
9. 9. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000668460800096