Finding correlation between customer typology and sales results in assisted retail using computer vision
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918504" target="_blank" >RIV/62156489:43110/20:43918504 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.magnanimitas.cz/ADALTA/1001/papers/I_machalicky.pdf" target="_blank" >http://www.magnanimitas.cz/ADALTA/1001/papers/I_machalicky.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Finding correlation between customer typology and sales results in assisted retail using computer vision
Popis výsledku v původním jazyce
We use computer vision capabilities to detect several basic attributes reliably recognizable from an image. We also analyze sales data to compare the connection between these data. The results are evaluated on a small sample by a human, and then everything is applied to a large set of data. The purpose of this comparison is to find a correlation with better (worse) sales results with collected data. This can be used to improve the planning of sales capacities, sales plans and other important indicators for retail store management. The article is narrowly focused on assisted retail in telecommunication business. For age and gender detection, the Cortana Analytics Suite from the Microsoft Azure platform is used. For other image recognition problems, custom algorithms have been created. All this has lead to the creation of a tool usable for anyone who wants to understand better who his customers in retail are.
Název v anglickém jazyce
Finding correlation between customer typology and sales results in assisted retail using computer vision
Popis výsledku anglicky
We use computer vision capabilities to detect several basic attributes reliably recognizable from an image. We also analyze sales data to compare the connection between these data. The results are evaluated on a small sample by a human, and then everything is applied to a large set of data. The purpose of this comparison is to find a correlation with better (worse) sales results with collected data. This can be used to improve the planning of sales capacities, sales plans and other important indicators for retail store management. The article is narrowly focused on assisted retail in telecommunication business. For age and gender detection, the Cortana Analytics Suite from the Microsoft Azure platform is used. For other image recognition problems, custom algorithms have been created. All this has lead to the creation of a tool usable for anyone who wants to understand better who his customers in retail are.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Ad Alta
ISSN
1804-7890
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
5
Strana od-do
354-358
Kód UT WoS článku
000562038200061
EID výsledku v databázi Scopus
—