Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Drilling head knives degradation modelling based on stochastic diffusion processes backed up by state space models

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F22%3A43920284" target="_blank" >RIV/62156489:43110/22:43920284 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60162694:G43__/22:00557234

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.ymssp.2021.108448" target="_blank" >https://doi.org/10.1016/j.ymssp.2021.108448</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.ymssp.2021.108448" target="_blank" >10.1016/j.ymssp.2021.108448</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Drilling head knives degradation modelling based on stochastic diffusion processes backed up by state space models

  • Popis výsledku v původním jazyce

    System quality requirements are typically formed by consideration of reliability and safety performance. Failures caused by system weakness, degradation or fatigue may cause undesired, and potentially dangerous, consequences. For various reasons, not all processes of system degradation are easily monitored in the lifecycle of a system. Degradation evolution leads to changes in both performance and reliability characteristics. In this article, we investigate a mining system consisting of dataset records on in-field operational characteristics of a drilling head. We work with these data in order to get a picture of system degradation and actual condition. For data assessment and modelling, we apply both improved and specific new mathematical models. We examine the data using extended and enhanced state space models, which are suitable for system state and condition investigation. Our time series approaches are based on a modified Kalman-type backpropagation recursion. The improved and modified state space models are accompanied by improved forms of selected stochastic diffusion processes. The diffusion processes are used both for degradation modelling and also for forecasting potential failure occurrence. All of these models are expected to help both with deterioration propagation assessment and with the indication of when the degradation of the system under investigation is predicted to reach the critical limit. Such a limit is represented by threshold performance characteristics that may lead to either soft or hard failure with related faults. The outcomes presented in this article may help with i) failure occurrence prediction, ii) residual useful life prognosis, iii) safer system operation, iv) system utilisation rationalisation and v) maintenance forecasting.

  • Název v anglickém jazyce

    Drilling head knives degradation modelling based on stochastic diffusion processes backed up by state space models

  • Popis výsledku anglicky

    System quality requirements are typically formed by consideration of reliability and safety performance. Failures caused by system weakness, degradation or fatigue may cause undesired, and potentially dangerous, consequences. For various reasons, not all processes of system degradation are easily monitored in the lifecycle of a system. Degradation evolution leads to changes in both performance and reliability characteristics. In this article, we investigate a mining system consisting of dataset records on in-field operational characteristics of a drilling head. We work with these data in order to get a picture of system degradation and actual condition. For data assessment and modelling, we apply both improved and specific new mathematical models. We examine the data using extended and enhanced state space models, which are suitable for system state and condition investigation. Our time series approaches are based on a modified Kalman-type backpropagation recursion. The improved and modified state space models are accompanied by improved forms of selected stochastic diffusion processes. The diffusion processes are used both for degradation modelling and also for forecasting potential failure occurrence. All of these models are expected to help both with deterioration propagation assessment and with the indication of when the degradation of the system under investigation is predicted to reach the critical limit. Such a limit is represented by threshold performance characteristics that may lead to either soft or hard failure with related faults. The outcomes presented in this article may help with i) failure occurrence prediction, ii) residual useful life prognosis, iii) safer system operation, iv) system utilisation rationalisation and v) maintenance forecasting.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Mechanical Systems and Signal Processing

  • ISSN

    0888-3270

  • e-ISSN

    1096-1216

  • Svazek periodika

    166

  • Číslo periodika v rámci svazku

    1 March

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    21

  • Strana od-do

    108448

  • Kód UT WoS článku

    000704880300001

  • EID výsledku v databázi Scopus

    2-s2.0-85115385379