Degradation process and failure estimation of drilling system based on real data and diffusion process supported by state space models
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F20%3A43918053" target="_blank" >RIV/62156489:43110/20:43918053 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60162694:G43__/20:00555846
Výsledek na webu
<a href="https://doi.org/10.1016/j.measurement.2020.108076" target="_blank" >https://doi.org/10.1016/j.measurement.2020.108076</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.measurement.2020.108076" target="_blank" >10.1016/j.measurement.2020.108076</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Degradation process and failure estimation of drilling system based on real data and diffusion process supported by state space models
Popis výsledku v původním jazyce
Technical systems used in adverse environments are subject to very intense degradation and their parts deterioration. Due to the problematic placement of some parts, it is sometimes very difficult, to indicate the level of degradation and possible failure occurrence. Therefore, it is very useful to work with the available field operation data. Since we possess such data and apply progressive methods to model the degradation, we are able to predict the possible failure occurrence and forecast residual useful life. At first, we apply spectral analysis approaches. The spectral analysis is used to capture extreme values in the data structure. The extreme values are later filtered out to avoid future estimations which might be affected by the deformed inputs. In the next step, we use non-parametric smoothing and state space models to acquire trend, variance and related statistics in the data structure. These characteristics are later used as input parameters for specific and new forms of diffusion processes. With these diffusion processes we would like to model the degradation evolvement and failure occurrence. The failure occurrence is represented as one of the statistics of the first passage time (FPT). FPT is a moment when the modelled trajectory hits the predefined threshold - such threshold represents a critical limit for our observation. The outcomes are useful for (i) degradation modelling, deterioration prediction and condition assessment, (ii) operation and maintenance planning and rationalisation, and (iii) life cycle cost optimisation and safety improvement.
Název v anglickém jazyce
Degradation process and failure estimation of drilling system based on real data and diffusion process supported by state space models
Popis výsledku anglicky
Technical systems used in adverse environments are subject to very intense degradation and their parts deterioration. Due to the problematic placement of some parts, it is sometimes very difficult, to indicate the level of degradation and possible failure occurrence. Therefore, it is very useful to work with the available field operation data. Since we possess such data and apply progressive methods to model the degradation, we are able to predict the possible failure occurrence and forecast residual useful life. At first, we apply spectral analysis approaches. The spectral analysis is used to capture extreme values in the data structure. The extreme values are later filtered out to avoid future estimations which might be affected by the deformed inputs. In the next step, we use non-parametric smoothing and state space models to acquire trend, variance and related statistics in the data structure. These characteristics are later used as input parameters for specific and new forms of diffusion processes. With these diffusion processes we would like to model the degradation evolvement and failure occurrence. The failure occurrence is represented as one of the statistics of the first passage time (FPT). FPT is a moment when the modelled trajectory hits the predefined threshold - such threshold represents a critical limit for our observation. The outcomes are useful for (i) degradation modelling, deterioration prediction and condition assessment, (ii) operation and maintenance planning and rationalisation, and (iii) life cycle cost optimisation and safety improvement.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50202 - Applied Economics, Econometrics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Measurement
ISSN
0263-2241
e-ISSN
—
Svazek periodika
164
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
108076
Kód UT WoS článku
000548651300015
EID výsledku v databázi Scopus
2-s2.0-85086572251