Learning Analytics
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43110%2F24%3A43926306" target="_blank" >RIV/62156489:43110/24:43926306 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning Analytics
Popis výsledku v původním jazyce
This study material provides a detailed exploration of learning analytics, focusing on how data-driven insights can improve educational outcomes. The content begins with a comprehensive introduction to the fundamental concepts, objectives, and challenges of learning analytics, followed by an examination of its essential elements and data resources. The book delves into various methodological frameworks, data analysis methods, and preprocessing techniques to equip readers with the skills needed to perform effective exploratory data analysis. Key machine learning models such as linear regression, random forests, clustering using K-means, and association rule mining are thoroughly explained and contextualized within the realm of learning analytics. The material also highlights current research topics and the development of educational technology (EdTech) using AI, machine learning, and deep learning models. Practical insights into software development, open architecture frameworks, and project management are provided to support the successful implementation of learning analytics in educational settings.
Název v anglickém jazyce
Learning Analytics
Popis výsledku anglicky
This study material provides a detailed exploration of learning analytics, focusing on how data-driven insights can improve educational outcomes. The content begins with a comprehensive introduction to the fundamental concepts, objectives, and challenges of learning analytics, followed by an examination of its essential elements and data resources. The book delves into various methodological frameworks, data analysis methods, and preprocessing techniques to equip readers with the skills needed to perform effective exploratory data analysis. Key machine learning models such as linear regression, random forests, clustering using K-means, and association rule mining are thoroughly explained and contextualized within the realm of learning analytics. The material also highlights current research topics and the development of educational technology (EdTech) using AI, machine learning, and deep learning models. Practical insights into software development, open architecture frameworks, and project management are provided to support the successful implementation of learning analytics in educational settings.
Klasifikace
Druh
B - Odborná kniha
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
ISBN
978-80-558-2232-7
Počet stran knihy
217
Název nakladatele
Univerzita Konštantína Filozofa v Nitre
Místo vydání
Nitra
Kód UT WoS knihy
—