Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Optimization of the municipal waste collection route based on the method of the minimum pairing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F16%3A43910883" target="_blank" >RIV/62156489:43210/16:43910883 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.11118/actaun201664030847" target="_blank" >http://dx.doi.org/10.11118/actaun201664030847</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.11118/actaun201664030847" target="_blank" >10.11118/actaun201664030847</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Optimization of the municipal waste collection route based on the method of the minimum pairing

  • Popis výsledku v původním jazyce

    In the present article is shown the use of Maple program for processing of data describing the position of municipal waste sources and topology of collecting area. The data are further processed through the use of graph theory algorithms, which enable creation of collection round proposal. In this case study is described method of waste pick-up solution in a certain village of approx. 1,600 inhabitants and built-up area of approx. 30 hectares. Village has approx. 11.5 kilometers of ride able routes, with approx. 1 kilometer without waste source. The first part shows topology of the village in light of location of waste sources and capacity of the routes. In the second part are topological data converted into data that can be processed by use of the Graph Theory and the correspondent graph is shown. Optimizing collection route in a certain graph means to find the Euler circle. However, this circle can be constructed only on condition that all the vertices of the graph are of an even degree. Practically this means that is necessary to introduce auxiliary edges - paths that will be passed twice. These paths will connect vertices with odd values. The optimal solution then requires that the total length of the inserted edges was minimal possible, which corresponds to the minimum pairing method. As it is a problem of exponential complexity, it is necessary to make some simplifications. These simplifications are depicted graphically and the results are displayed in the conclusion. The resulting graph with embedded auxiliary edges can be used as a basic decision making material for creation of real collection round that respects local limitations such as one way streets or streets where is the waste collection is not possible from both sides at the same time.

  • Název v anglickém jazyce

    Optimization of the municipal waste collection route based on the method of the minimum pairing

  • Popis výsledku anglicky

    In the present article is shown the use of Maple program for processing of data describing the position of municipal waste sources and topology of collecting area. The data are further processed through the use of graph theory algorithms, which enable creation of collection round proposal. In this case study is described method of waste pick-up solution in a certain village of approx. 1,600 inhabitants and built-up area of approx. 30 hectares. Village has approx. 11.5 kilometers of ride able routes, with approx. 1 kilometer without waste source. The first part shows topology of the village in light of location of waste sources and capacity of the routes. In the second part are topological data converted into data that can be processed by use of the Graph Theory and the correspondent graph is shown. Optimizing collection route in a certain graph means to find the Euler circle. However, this circle can be constructed only on condition that all the vertices of the graph are of an even degree. Practically this means that is necessary to introduce auxiliary edges - paths that will be passed twice. These paths will connect vertices with odd values. The optimal solution then requires that the total length of the inserted edges was minimal possible, which corresponds to the minimum pairing method. As it is a problem of exponential complexity, it is necessary to make some simplifications. These simplifications are depicted graphically and the results are displayed in the conclusion. The resulting graph with embedded auxiliary edges can be used as a basic decision making material for creation of real collection round that respects local limitations such as one way streets or streets where is the waste collection is not possible from both sides at the same time.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    DM - Tuhý odpad a jeho kontrola, recyklace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis

  • ISSN

    1211-8516

  • e-ISSN

  • Svazek periodika

    64

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    8

  • Strana od-do

    847-854

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84978731916