Precise Positioning and Heading for Autonomous Scouting Robots in a Harsh Environment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F19%3A43915743" target="_blank" >RIV/62156489:43210/19:43915743 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-030-19651-6_9" target="_blank" >https://doi.org/10.1007/978-3-030-19651-6_9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-19651-6_9" target="_blank" >10.1007/978-3-030-19651-6_9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Precise Positioning and Heading for Autonomous Scouting Robots in a Harsh Environment
Popis výsledku v původním jazyce
This document describes the design and verification of the GreenPatrol localization subsystem. Greenpatrol is an autonomous robot system intended to operate in light indoor environments, such as greenhouses, detecting and treating pests in high-value crops such as tomato and pepper. High accuracy positioning is required for performing this in a trustable and safety manner. The proposed localization solution is described hereafter. Test have been carried out in the real greenhouse environment. The proposed localization subsystem consists of two differentiate parts: (1) an absolute localization module which uses precise positioning GNSS techniques in combination with the robot proprioceptive sensors (i.e. inertial sensors and odometry) with an estimated position error lower than 30 cm, and (2) a relative localization module that takes the absolute solution as input and combines it with the robot range readings to generate a model of the environment and to estimate the robot position and heading inside it. From the analysis of the tests results it follows that the absolute localization is able to provide a heading solution with accuracy 5. more than a 85% of the time. The relative localization algorithm, on the other hand, gives an estimation of the robot position inside the map which does not improve significantly the absolute solution, but it is able to refine the heading estimation and to absorb transitory error peaks. This paper is organized as follows: first an introduction describing the robot localization system purposed and the state of the art of the involved technologies, second a description of the main subsystems involved and the problems associated, then the tests carried out in a real scenario and the obtained results for check its behavior for each one of the subsystems, and finally conclusions and future work.
Název v anglickém jazyce
Precise Positioning and Heading for Autonomous Scouting Robots in a Harsh Environment
Popis výsledku anglicky
This document describes the design and verification of the GreenPatrol localization subsystem. Greenpatrol is an autonomous robot system intended to operate in light indoor environments, such as greenhouses, detecting and treating pests in high-value crops such as tomato and pepper. High accuracy positioning is required for performing this in a trustable and safety manner. The proposed localization solution is described hereafter. Test have been carried out in the real greenhouse environment. The proposed localization subsystem consists of two differentiate parts: (1) an absolute localization module which uses precise positioning GNSS techniques in combination with the robot proprioceptive sensors (i.e. inertial sensors and odometry) with an estimated position error lower than 30 cm, and (2) a relative localization module that takes the absolute solution as input and combines it with the robot range readings to generate a model of the environment and to estimate the robot position and heading inside it. From the analysis of the tests results it follows that the absolute localization is able to provide a heading solution with accuracy 5. more than a 85% of the time. The relative localization algorithm, on the other hand, gives an estimation of the robot position inside the map which does not improve significantly the absolute solution, but it is able to refine the heading estimation and to absorb transitory error peaks. This paper is organized as follows: first an introduction describing the robot localization system purposed and the state of the art of the involved technologies, second a description of the main subsystems involved and the problems associated, then the tests carried out in a real scenario and the obtained results for check its behavior for each one of the subsystems, and finally conclusions and future work.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
From Bioinspired Systems and Biomedical Applications to Machine Learning. Part II
ISBN
978-3-030-19650-9
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
15
Strana od-do
82-96
Název nakladatele
Springer Switzerland
Místo vydání
Cham
Místo konání akce
Almería
Datum konání akce
3. 6. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000502114100009