Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Precise Positioning and Heading for Autonomous Scouting Robots in a Harsh Environment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F19%3A43915743" target="_blank" >RIV/62156489:43210/19:43915743 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/978-3-030-19651-6_9" target="_blank" >https://doi.org/10.1007/978-3-030-19651-6_9</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-030-19651-6_9" target="_blank" >10.1007/978-3-030-19651-6_9</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Precise Positioning and Heading for Autonomous Scouting Robots in a Harsh Environment

  • Popis výsledku v původním jazyce

    This document describes the design and verification of the GreenPatrol localization subsystem. Greenpatrol is an autonomous robot system intended to operate in light indoor environments, such as greenhouses, detecting and treating pests in high-value crops such as tomato and pepper. High accuracy positioning is required for performing this in a trustable and safety manner. The proposed localization solution is described hereafter. Test have been carried out in the real greenhouse environment. The proposed localization subsystem consists of two differentiate parts: (1) an absolute localization module which uses precise positioning GNSS techniques in combination with the robot proprioceptive sensors (i.e. inertial sensors and odometry) with an estimated position error lower than 30 cm, and (2) a relative localization module that takes the absolute solution as input and combines it with the robot range readings to generate a model of the environment and to estimate the robot position and heading inside it. From the analysis of the tests results it follows that the absolute localization is able to provide a heading solution with accuracy 5. more than a 85% of the time. The relative localization algorithm, on the other hand, gives an estimation of the robot position inside the map which does not improve significantly the absolute solution, but it is able to refine the heading estimation and to absorb transitory error peaks. This paper is organized as follows: first an introduction describing the robot localization system purposed and the state of the art of the involved technologies, second a description of the main subsystems involved and the problems associated, then the tests carried out in a real scenario and the obtained results for check its behavior for each one of the subsystems, and finally conclusions and future work.

  • Název v anglickém jazyce

    Precise Positioning and Heading for Autonomous Scouting Robots in a Harsh Environment

  • Popis výsledku anglicky

    This document describes the design and verification of the GreenPatrol localization subsystem. Greenpatrol is an autonomous robot system intended to operate in light indoor environments, such as greenhouses, detecting and treating pests in high-value crops such as tomato and pepper. High accuracy positioning is required for performing this in a trustable and safety manner. The proposed localization solution is described hereafter. Test have been carried out in the real greenhouse environment. The proposed localization subsystem consists of two differentiate parts: (1) an absolute localization module which uses precise positioning GNSS techniques in combination with the robot proprioceptive sensors (i.e. inertial sensors and odometry) with an estimated position error lower than 30 cm, and (2) a relative localization module that takes the absolute solution as input and combines it with the robot range readings to generate a model of the environment and to estimate the robot position and heading inside it. From the analysis of the tests results it follows that the absolute localization is able to provide a heading solution with accuracy 5. more than a 85% of the time. The relative localization algorithm, on the other hand, gives an estimation of the robot position inside the map which does not improve significantly the absolute solution, but it is able to refine the heading estimation and to absorb transitory error peaks. This paper is organized as follows: first an introduction describing the robot localization system purposed and the state of the art of the involved technologies, second a description of the main subsystems involved and the problems associated, then the tests carried out in a real scenario and the obtained results for check its behavior for each one of the subsystems, and finally conclusions and future work.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20205 - Automation and control systems

Návaznosti výsledku

  • Projekt

  • Návaznosti

    O - Projekt operacniho programu

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    From Bioinspired Systems and Biomedical Applications to Machine Learning. Part II

  • ISBN

    978-3-030-19650-9

  • ISSN

    0302-9743

  • e-ISSN

    1611-3349

  • Počet stran výsledku

    15

  • Strana od-do

    82-96

  • Název nakladatele

    Springer Switzerland

  • Místo vydání

    Cham

  • Místo konání akce

    Almería

  • Datum konání akce

    3. 6. 2019

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000502114100009