Hybrid Vision-Based Navigation for Mobile Robots in Mixed Indoor/Outdoor Environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21230%2F15%3A00223349" target="_blank" >RIV/68407700:21230/15:00223349 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.patrec.2014.10.010" target="_blank" >http://dx.doi.org/10.1016/j.patrec.2014.10.010</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.patrec.2014.10.010" target="_blank" >10.1016/j.patrec.2014.10.010</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Vision-Based Navigation for Mobile Robots in Mixed Indoor/Outdoor Environments
Popis výsledku v původním jazyce
In this paper we present a vision-based navigation system for mobile robots equipped with a single, off-the-shelf camera in mixed indoor/outdoor environments. A hybrid approach is proposed, based on the teach-and-replay technique, which combines a path-following and a feature-based navigation algorithm. We describe the navigation algorithms and show that both of them correct the robot's lateral displacement from the intended path. After that, we claim that even though neither of the methods explicitly estimates the robot position, the heading corrections themselves keep the robot position error bound. We show that combination of the methods outperforms the pure feature-based approach in terms of localization precision and that this combination reducesmap size and simplifies the learning phase. Experiments in mixed indoor/outdoor environments were carried out with a wheeled and a tracked mobile robots in order to demonstrate the validity and the benefits of the hybrid approach.
Název v anglickém jazyce
Hybrid Vision-Based Navigation for Mobile Robots in Mixed Indoor/Outdoor Environments
Popis výsledku anglicky
In this paper we present a vision-based navigation system for mobile robots equipped with a single, off-the-shelf camera in mixed indoor/outdoor environments. A hybrid approach is proposed, based on the teach-and-replay technique, which combines a path-following and a feature-based navigation algorithm. We describe the navigation algorithms and show that both of them correct the robot's lateral displacement from the intended path. After that, we claim that even though neither of the methods explicitly estimates the robot position, the heading corrections themselves keep the robot position error bound. We show that combination of the methods outperforms the pure feature-based approach in terms of localization precision and that this combination reducesmap size and simplifies the learning phase. Experiments in mixed indoor/outdoor environments were carried out with a wheeled and a tracked mobile robots in order to demonstrate the validity and the benefits of the hybrid approach.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/7AMB14AR015" target="_blank" >7AMB14AR015: Multi-robotické autonomní systémy</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Pattern Recognition Letters
ISSN
0167-8655
e-ISSN
—
Svazek periodika
53
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
118-128
Kód UT WoS článku
000349555500017
EID výsledku v databázi Scopus
2-s2.0-84922541097