Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Recommendations for gap-filling eddy covariance latent heat flux measurements using marginal distribution sampling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F20%3A43916494" target="_blank" >RIV/62156489:43210/20:43916494 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/86652079:_____/19:00511514 RIV/86652079:_____/20:00540063

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s00704-019-02975-w" target="_blank" >https://doi.org/10.1007/s00704-019-02975-w</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s00704-019-02975-w" target="_blank" >10.1007/s00704-019-02975-w</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Recommendations for gap-filling eddy covariance latent heat flux measurements using marginal distribution sampling

  • Popis výsledku v původním jazyce

    Accurate eddy covariance (EC) measurements require that the atmospheric and orographic conditions meet certain criteria. It is common that up to 60% of the original data must be rejected. In particular, a high percentage of data is often removed during nocturnal periods. Currently, the most widely used method for filling gaps in EC datasets is the tool developed at the Max Planck Institute for Biogeochemistry [as reported by Falge et al. (2001), Reichstein et al. (2005), and Wutzler et al. (2018)]. This tool has been primarily developed and tested for the gap-filling of CO2 fluxes. In this study, we provide the first detailed testing of this gap-filling tool on LE fluxes and explore alternative settings in the gap-filling procedure using different meteorological drivers. The tests were conducted using five EC data sets. Random artificial gaps of four different gap-length scenarios were used to compare the settings. Error propagation for both the default and alternative settings was computed for various time aggregations. In general, we confirm a good performance of the standard gap-filling tool with a bias error of MINUS SIGN 0.09 and MINUS SIGN 0.21 W mMINUS SIGN 2 for nocturnal growing and non-growing season cases, respectively, while daytime average bias error was 0.01 W mMINUS SIGN 2. Alternative settings produced similar results to the default settings for diurnal cases; however, the alternative settings substantially (81%) improved the performance of night-time gap-filling. At sites where night-time LE fluxes are significant, we recommend using net radiation instead of global radiation and relative air humidity instead of vapour pressure deficit to drive the LE gap-filling.

  • Název v anglickém jazyce

    Recommendations for gap-filling eddy covariance latent heat flux measurements using marginal distribution sampling

  • Popis výsledku anglicky

    Accurate eddy covariance (EC) measurements require that the atmospheric and orographic conditions meet certain criteria. It is common that up to 60% of the original data must be rejected. In particular, a high percentage of data is often removed during nocturnal periods. Currently, the most widely used method for filling gaps in EC datasets is the tool developed at the Max Planck Institute for Biogeochemistry [as reported by Falge et al. (2001), Reichstein et al. (2005), and Wutzler et al. (2018)]. This tool has been primarily developed and tested for the gap-filling of CO2 fluxes. In this study, we provide the first detailed testing of this gap-filling tool on LE fluxes and explore alternative settings in the gap-filling procedure using different meteorological drivers. The tests were conducted using five EC data sets. Random artificial gaps of four different gap-length scenarios were used to compare the settings. Error propagation for both the default and alternative settings was computed for various time aggregations. In general, we confirm a good performance of the standard gap-filling tool with a bias error of MINUS SIGN 0.09 and MINUS SIGN 0.21 W mMINUS SIGN 2 for nocturnal growing and non-growing season cases, respectively, while daytime average bias error was 0.01 W mMINUS SIGN 2. Alternative settings produced similar results to the default settings for diurnal cases; however, the alternative settings substantially (81%) improved the performance of night-time gap-filling. At sites where night-time LE fluxes are significant, we recommend using net radiation instead of global radiation and relative air humidity instead of vapour pressure deficit to drive the LE gap-filling.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10509 - Meteorology and atmospheric sciences

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Theoretical and Applied Climatology

  • ISSN

    0177-798X

  • e-ISSN

  • Svazek periodika

    139

  • Číslo periodika v rámci svazku

    1-2

  • Stát vydavatele periodika

    AT - Rakouská republika

  • Počet stran výsledku

    12

  • Strana od-do

    677-688

  • Kód UT WoS článku

    000511515200045

  • EID výsledku v databázi Scopus

    2-s2.0-85073932482