Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The comparasion of satellite and unmanned multispectral imaging for estimation of plant nutritional status of cereals

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F21%3A43921795" target="_blank" >RIV/62156489:43210/21:43921795 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.5593/sgem2021/2.1/s10.74" target="_blank" >https://doi.org/10.5593/sgem2021/2.1/s10.74</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5593/sgem2021/2.1/s10.74" target="_blank" >10.5593/sgem2021/2.1/s10.74</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The comparasion of satellite and unmanned multispectral imaging for estimation of plant nutritional status of cereals

  • Popis výsledku v původním jazyce

    The aim of the study is the evaluation of multispectral imaging by unmanned aerial vehicles (UAV) and free available satellite data (Sentinel - 2) for the diagnosis of the nutritional status of winter wheat. For this purpose, a field trial was established in 2020 (28 ha of winter wheat), both on the fields of farm enterprise ZD Kojčice (Pelhřimov, Czech Republic). The observation of the fields was performed in two vegetation phases important for the application of nitrogen fertilizers to cereals by topdressing (BBCH 31, BBCH 51). Plant samples were taken in both stages in non-random grid to determine the nitrogen content and the total amount of aboveground biomass. Simultaneously an UAV imaging was carried out by using multispectral camera MicaSense Altum mounted on the drone to capture plant reflectance in green, red, red-edge and near-infrared spectral bands. The images prepared in this way were processed in photogrammetric software to create complete orthomosics. From these data and from the average value estimated by zonal statistics from a 2 m buffer zone around each sampling site, a set of vegetation indices (NDVI, NDRE, etc.) was calculated. For comparison, multispectral images from the Sentinel - 2 satellite were selected near to the sampling date to calculate the similar set of vegetation indices as in the UAV, however with lower spatial resolution. Statistical evaluation by correlation and regression analysis showed a strong relationship between the observed crop parameters and vegetation indices from both remote sensing methods. For estimation of nitrogen uptake, the most sensitive correlations were reached by the red-edge vegetation indices (NDRE, NRERI), on the other hand highest sensitivity the amount of aboveground biomass was achieved NDVI and SRI index.

  • Název v anglickém jazyce

    The comparasion of satellite and unmanned multispectral imaging for estimation of plant nutritional status of cereals

  • Popis výsledku anglicky

    The aim of the study is the evaluation of multispectral imaging by unmanned aerial vehicles (UAV) and free available satellite data (Sentinel - 2) for the diagnosis of the nutritional status of winter wheat. For this purpose, a field trial was established in 2020 (28 ha of winter wheat), both on the fields of farm enterprise ZD Kojčice (Pelhřimov, Czech Republic). The observation of the fields was performed in two vegetation phases important for the application of nitrogen fertilizers to cereals by topdressing (BBCH 31, BBCH 51). Plant samples were taken in both stages in non-random grid to determine the nitrogen content and the total amount of aboveground biomass. Simultaneously an UAV imaging was carried out by using multispectral camera MicaSense Altum mounted on the drone to capture plant reflectance in green, red, red-edge and near-infrared spectral bands. The images prepared in this way were processed in photogrammetric software to create complete orthomosics. From these data and from the average value estimated by zonal statistics from a 2 m buffer zone around each sampling site, a set of vegetation indices (NDVI, NDRE, etc.) was calculated. For comparison, multispectral images from the Sentinel - 2 satellite were selected near to the sampling date to calculate the similar set of vegetation indices as in the UAV, however with lower spatial resolution. Statistical evaluation by correlation and regression analysis showed a strong relationship between the observed crop parameters and vegetation indices from both remote sensing methods. For estimation of nitrogen uptake, the most sensitive correlations were reached by the red-edge vegetation indices (NDRE, NRERI), on the other hand highest sensitivity the amount of aboveground biomass was achieved NDVI and SRI index.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    40106 - Agronomy, plant breeding and plant protection; (Agricultural biotechnology to be 4.4)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    SGEM2021. Informatics, Geoinformatics and Remote Sensing: Conference Proceedings

  • ISBN

    978-619-7603-22-4

  • ISSN

    1314-2704

  • e-ISSN

  • Počet stran výsledku

    8

  • Strana od-do

    615-622

  • Název nakladatele

    STEF92 Technology Ltd.

  • Místo vydání

    Sofie

  • Místo konání akce

    Albena

  • Datum konání akce

    16. 8. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku