Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43210%2F22%3A43921395" target="_blank" >RIV/62156489:43210/22:43921395 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.rser.2022.112491" target="_blank" >https://doi.org/10.1016/j.rser.2022.112491</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.rser.2022.112491" target="_blank" >10.1016/j.rser.2022.112491</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management
Popis výsledku v původním jazyce
Synanthropic vegetation occurs at sites of photovoltaic power plants, where vegetation management is typically ignored, and can have adverse effects on photovoltaic panels as they increase fire hazards. Most scientific papers related to the installation and operation of solar power plants do not address the impact of photovoltaic power plants on vegetation and the associated fire hazards; grasslands, where photovoltaic power plants are usually located, have abundant grass that is highly flammable. This study was conducted in the South Moravian region of the Czech Republic to monitor and quantify the occurrence of plant species at sites where two different types of photovoltaic panels were installed. It was hypothesized that different types of photovoltaic panels are associated with different types of vegetation. Vegetation was assessed using phytocoenological relevés. The vegetation was controlled by grazing sheep and mowing around photovoltaic panels. The results of this study indicated that stationary photovoltaic panels create favourable conditions for species that increase fire hazards. Fire hazards can be reduced using grazing or mowing and removal of biomass. Using rotating photovoltaic panels, combined with sheep grazing, is more effective for promoting vegetation that reduces the chances of fire. This study highlights that photovoltaic power plants represent a renewable and sustainable energy source; however, different types of photovoltaic panels are associated with different vegetation types. To eliminate fire hazards, it is necessary to employ suitable methods of vegetation management (e.g., grazing by animals). Furthermore, combining an appropriate method of vegetation management with rotating photovoltaic panels will further reduce fire hazards.
Název v anglickém jazyce
Fire hazard associated with different types of photovoltaic power plants: Effect of vegetation management
Popis výsledku anglicky
Synanthropic vegetation occurs at sites of photovoltaic power plants, where vegetation management is typically ignored, and can have adverse effects on photovoltaic panels as they increase fire hazards. Most scientific papers related to the installation and operation of solar power plants do not address the impact of photovoltaic power plants on vegetation and the associated fire hazards; grasslands, where photovoltaic power plants are usually located, have abundant grass that is highly flammable. This study was conducted in the South Moravian region of the Czech Republic to monitor and quantify the occurrence of plant species at sites where two different types of photovoltaic panels were installed. It was hypothesized that different types of photovoltaic panels are associated with different types of vegetation. Vegetation was assessed using phytocoenological relevés. The vegetation was controlled by grazing sheep and mowing around photovoltaic panels. The results of this study indicated that stationary photovoltaic panels create favourable conditions for species that increase fire hazards. Fire hazards can be reduced using grazing or mowing and removal of biomass. Using rotating photovoltaic panels, combined with sheep grazing, is more effective for promoting vegetation that reduces the chances of fire. This study highlights that photovoltaic power plants represent a renewable and sustainable energy source; however, different types of photovoltaic panels are associated with different vegetation types. To eliminate fire hazards, it is necessary to employ suitable methods of vegetation management (e.g., grazing by animals). Furthermore, combining an appropriate method of vegetation management with rotating photovoltaic panels will further reduce fire hazards.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20701 - Environmental and geological engineering, geotechnics
Návaznosti výsledku
Projekt
<a href="/cs/project/LTC20001" target="_blank" >LTC20001: Fire effects on soils</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Renewable and Sustainable Energy Reviews
ISSN
1364-0321
e-ISSN
1879-0690
Svazek periodika
162
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
9
Strana od-do
112491
Kód UT WoS článku
000799590900005
EID výsledku v databázi Scopus
2-s2.0-85129569109