Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Fuzzy surface visualization using hsl colour model

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43310%2F17%3A43911586" target="_blank" >RIV/62156489:43310/17:43911586 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61989592:15310/17:73585297

  • Výsledek na webu

    <a href="http://sv-journal.org/2017-2/03.php?lang=en" target="_blank" >http://sv-journal.org/2017-2/03.php?lang=en</a>

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Fuzzy surface visualization using hsl colour model

  • Popis výsledku v původním jazyce

    Fuzzy surfaces are surface models that account for the uncertainty that originates either in data or from user&apos;s uncertainty about the interpolation settings. So far, fuzzy surfaces have been visualized as 3D projections, profiles or as separate visualizations of three surfaces that show minimal, modal and maximal estimated value. Unfortunately, neither of these approaches towards fuzzy surface visualization is quite suitable for practical application. 3D projections and profiles manage to capture only part of the surface and three separate visualization are extremely challenging for users. In ideal case the user needs to obtain complete information (including uncertainty) about whole surface in the simplest visualization possible. As a result of these issues, a new method for fuzzy surface visualization is proposed. The method utilizes hue saturation lightness (HSL) colour model to depict the most important values of the predicted fuzzy surface. The method combines properties of the set of fuzzy numbers, that form the fuzzy surface, with properties of colour defined in HSL colour model. The resulting visualization utilizes continuous two-dimensional gamut to visualize the fuzzy surface. In cartography, however, the continuous gamuts are often consider as needlessly challenging for users (to obtain the correct information); so as a simplification a discrete variant of the two dimensional gamut is provided as well. The variant of visualization utilizing the discrete gamut is designed to be as customizable as possible, so that it is possible to adapt the visualization (in terms of complexity) for various groups of users from experts to non-experts. The proposed approaches are defined in terms of equations that allow visualization of arbitrary fuzzy surface with high level of visualization customization. The visualization method is presented on practical case study. A simple software, that allows testing of the proposed visualization, is provided as an appendix.

  • Název v anglickém jazyce

    Fuzzy surface visualization using hsl colour model

  • Popis výsledku anglicky

    Fuzzy surfaces are surface models that account for the uncertainty that originates either in data or from user&apos;s uncertainty about the interpolation settings. So far, fuzzy surfaces have been visualized as 3D projections, profiles or as separate visualizations of three surfaces that show minimal, modal and maximal estimated value. Unfortunately, neither of these approaches towards fuzzy surface visualization is quite suitable for practical application. 3D projections and profiles manage to capture only part of the surface and three separate visualization are extremely challenging for users. In ideal case the user needs to obtain complete information (including uncertainty) about whole surface in the simplest visualization possible. As a result of these issues, a new method for fuzzy surface visualization is proposed. The method utilizes hue saturation lightness (HSL) colour model to depict the most important values of the predicted fuzzy surface. The method combines properties of the set of fuzzy numbers, that form the fuzzy surface, with properties of colour defined in HSL colour model. The resulting visualization utilizes continuous two-dimensional gamut to visualize the fuzzy surface. In cartography, however, the continuous gamuts are often consider as needlessly challenging for users (to obtain the correct information); so as a simplification a discrete variant of the two dimensional gamut is provided as well. The variant of visualization utilizing the discrete gamut is designed to be as customizable as possible, so that it is possible to adapt the visualization (in terms of complexity) for various groups of users from experts to non-experts. The proposed approaches are defined in terms of equations that allow visualization of arbitrary fuzzy surface with high level of visualization customization. The visualization method is presented on practical case study. A simple software, that allows testing of the proposed visualization, is provided as an appendix.

Klasifikace

  • Druh

    J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/EE2.3.20.0170" target="_blank" >EE2.3.20.0170: Budování výzkumně-vzdělávacího týmu v oblasti modelování přírodních jevů a využití geoinformačních systémů, s vazbou na zapojení do mezinárodních sítí a programů.</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Naučnaja vizualizacija (Scientific Visualization)

  • ISSN

    2079-3537

  • e-ISSN

  • Svazek periodika

    9

  • Číslo periodika v rámci svazku

    2

  • Stát vydavatele periodika

    RU - Ruská federace

  • Počet stran výsledku

    17

  • Strana od-do

    26-42

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-85021100771