Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Generating land-cover maps from remotely sensed data: Manual vectorization versus object-oriented automation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F15%3A43906208" target="_blank" >RIV/62156489:43410/15:43906208 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Generating land-cover maps from remotely sensed data: Manual vectorization versus object-oriented automation

  • Popis výsledku v původním jazyce

    Manual vectorization of multispectral images is a widely used method for making land-use or land-cover maps. Although it is usually considered relatively accurate it is very time consuming, which has prompted the use in recent years of various semiautomatic methods for classifying remotely sensed images. One of the most promising of the latter is object-oriented image analysis based upon image segmentation, but the accuracy of its results, as well as its time demands, are disputed. Accordingly, this paper compared manual vectorization with object-oriented classification to reveal the strong and weak points of each. Two qualitatively different datasets were classified using both methods; time costs were monitored and accuracy levels were compared. It was found that manual vectorization achieved better overall accuracy (up to 93% versus 84%), but the semiautomatic method was usually more accurate when classifying some specific features such as roads, built-up areas, broadleaf trees and c

  • Název v anglickém jazyce

    Generating land-cover maps from remotely sensed data: Manual vectorization versus object-oriented automation

  • Popis výsledku anglicky

    Manual vectorization of multispectral images is a widely used method for making land-use or land-cover maps. Although it is usually considered relatively accurate it is very time consuming, which has prompted the use in recent years of various semiautomatic methods for classifying remotely sensed images. One of the most promising of the latter is object-oriented image analysis based upon image segmentation, but the accuracy of its results, as well as its time demands, are disputed. Accordingly, this paper compared manual vectorization with object-oriented classification to reveal the strong and weak points of each. Two qualitatively different datasets were classified using both methods; time costs were monitored and accuracy levels were compared. It was found that manual vectorization achieved better overall accuracy (up to 93% versus 84%), but the semiautomatic method was usually more accurate when classifying some specific features such as roads, built-up areas, broadleaf trees and c

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    GK - Lesnictví

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/ED3.1.00%2F10.0220" target="_blank" >ED3.1.00/10.0220: Centrum Transferu Technologií MENDELU</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2015

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied GIS

  • ISSN

    1832-5505

  • e-ISSN

  • Svazek periodika

    11

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    AU - Austrálie

  • Počet stran výsledku

    30

  • Strana od-do

    1-30

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus