Generating land-cover maps from remotely sensed data: Manual vectorization versus object-oriented automation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F15%3A43906208" target="_blank" >RIV/62156489:43410/15:43906208 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Generating land-cover maps from remotely sensed data: Manual vectorization versus object-oriented automation
Popis výsledku v původním jazyce
Manual vectorization of multispectral images is a widely used method for making land-use or land-cover maps. Although it is usually considered relatively accurate it is very time consuming, which has prompted the use in recent years of various semiautomatic methods for classifying remotely sensed images. One of the most promising of the latter is object-oriented image analysis based upon image segmentation, but the accuracy of its results, as well as its time demands, are disputed. Accordingly, this paper compared manual vectorization with object-oriented classification to reveal the strong and weak points of each. Two qualitatively different datasets were classified using both methods; time costs were monitored and accuracy levels were compared. It was found that manual vectorization achieved better overall accuracy (up to 93% versus 84%), but the semiautomatic method was usually more accurate when classifying some specific features such as roads, built-up areas, broadleaf trees and c
Název v anglickém jazyce
Generating land-cover maps from remotely sensed data: Manual vectorization versus object-oriented automation
Popis výsledku anglicky
Manual vectorization of multispectral images is a widely used method for making land-use or land-cover maps. Although it is usually considered relatively accurate it is very time consuming, which has prompted the use in recent years of various semiautomatic methods for classifying remotely sensed images. One of the most promising of the latter is object-oriented image analysis based upon image segmentation, but the accuracy of its results, as well as its time demands, are disputed. Accordingly, this paper compared manual vectorization with object-oriented classification to reveal the strong and weak points of each. Two qualitatively different datasets were classified using both methods; time costs were monitored and accuracy levels were compared. It was found that manual vectorization achieved better overall accuracy (up to 93% versus 84%), but the semiautomatic method was usually more accurate when classifying some specific features such as roads, built-up areas, broadleaf trees and c
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
GK - Lesnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/ED3.1.00%2F10.0220" target="_blank" >ED3.1.00/10.0220: Centrum Transferu Technologií MENDELU</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied GIS
ISSN
1832-5505
e-ISSN
—
Svazek periodika
11
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
AU - Austrálie
Počet stran výsledku
30
Strana od-do
1-30
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—