Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920302" target="_blank" >RIV/00216275:25410/23:39920302 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/13/20/11400" target="_blank" >https://www.mdpi.com/2076-3417/13/20/11400</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app132011400" target="_blank" >10.3390/app132011400</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery
Popis výsledku v původním jazyce
This article describes a comparison of the pixel-based classification methods used to distinguish ice from other land cover types. The article focuses on processing RGB imagery, as these are very easy to obtained. The imagery was taken using UAVs and has a very high spatial resolution. Classical classification methods (ISODATA and Maximum Likelihood) and more modern approaches (support vector machines, random forests, deep learning) have been compared for image data classifications. Input datasets were created from two distinct areas: The Pond Skříň and the Baroch Nature Reserve. The images were classified into two classes: ice and all other land cover types. The accuracy of each classification was verified using a Cohen’s Kappa coefficient, with reference values obtained via manual surface identification. Deep learning and Maximum Likelihood were the best classifiers, with a classification accuracy of over 92% in the first area of interest. On average, the support vector machine was the best classifier for both areas of interest. A comparison of the selected methods, which were applied to highly detailed RGB images obtained with UAVs, demonstrates the potential of their utilization compared to imagery obtained using satellites or aerial technologies for remote sensing.
Název v anglickém jazyce
Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery
Popis výsledku anglicky
This article describes a comparison of the pixel-based classification methods used to distinguish ice from other land cover types. The article focuses on processing RGB imagery, as these are very easy to obtained. The imagery was taken using UAVs and has a very high spatial resolution. Classical classification methods (ISODATA and Maximum Likelihood) and more modern approaches (support vector machines, random forests, deep learning) have been compared for image data classifications. Input datasets were created from two distinct areas: The Pond Skříň and the Baroch Nature Reserve. The images were classified into two classes: ice and all other land cover types. The accuracy of each classification was verified using a Cohen’s Kappa coefficient, with reference values obtained via manual surface identification. Deep learning and Maximum Likelihood were the best classifiers, with a classification accuracy of over 92% in the first area of interest. On average, the support vector machine was the best classifier for both areas of interest. A comparison of the selected methods, which were applied to highly detailed RGB images obtained with UAVs, demonstrates the potential of their utilization compared to imagery obtained using satellites or aerial technologies for remote sensing.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Science - Basel
ISSN
2076-3417
e-ISSN
2076-3417
Svazek periodika
13
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
11400
Kód UT WoS článku
001095934000001
EID výsledku v databázi Scopus
—