Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F23%3A39920302" target="_blank" >RIV/00216275:25410/23:39920302 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/13/20/11400" target="_blank" >https://www.mdpi.com/2076-3417/13/20/11400</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app132011400" target="_blank" >10.3390/app132011400</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery

  • Popis výsledku v původním jazyce

    This article describes a comparison of the pixel-based classification methods used to distinguish ice from other land cover types. The article focuses on processing RGB imagery, as these are very easy to obtained. The imagery was taken using UAVs and has a very high spatial resolution. Classical classification methods (ISODATA and Maximum Likelihood) and more modern approaches (support vector machines, random forests, deep learning) have been compared for image data classifications. Input datasets were created from two distinct areas: The Pond Skříň and the Baroch Nature Reserve. The images were classified into two classes: ice and all other land cover types. The accuracy of each classification was verified using a Cohen’s Kappa coefficient, with reference values obtained via manual surface identification. Deep learning and Maximum Likelihood were the best classifiers, with a classification accuracy of over 92% in the first area of interest. On average, the support vector machine was the best classifier for both areas of interest. A comparison of the selected methods, which were applied to highly detailed RGB images obtained with UAVs, demonstrates the potential of their utilization compared to imagery obtained using satellites or aerial technologies for remote sensing.

  • Název v anglickém jazyce

    Comparison of Automatic Classification Methods for Identification of Ice Surfaces from Unmanned-Aerial-Vehicle-Borne RGB Imagery

  • Popis výsledku anglicky

    This article describes a comparison of the pixel-based classification methods used to distinguish ice from other land cover types. The article focuses on processing RGB imagery, as these are very easy to obtained. The imagery was taken using UAVs and has a very high spatial resolution. Classical classification methods (ISODATA and Maximum Likelihood) and more modern approaches (support vector machines, random forests, deep learning) have been compared for image data classifications. Input datasets were created from two distinct areas: The Pond Skříň and the Baroch Nature Reserve. The images were classified into two classes: ice and all other land cover types. The accuracy of each classification was verified using a Cohen’s Kappa coefficient, with reference values obtained via manual surface identification. Deep learning and Maximum Likelihood were the best classifiers, with a classification accuracy of over 92% in the first area of interest. On average, the support vector machine was the best classifier for both areas of interest. A comparison of the selected methods, which were applied to highly detailed RGB images obtained with UAVs, demonstrates the potential of their utilization compared to imagery obtained using satellites or aerial technologies for remote sensing.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Science - Basel

  • ISSN

    2076-3417

  • e-ISSN

    2076-3417

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    20

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    14

  • Strana od-do

    11400

  • Kód UT WoS článku

    001095934000001

  • EID výsledku v databázi Scopus