A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216224%3A14310%2F15%3A00085925" target="_blank" >RIV/00216224:14310/15:00085925 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.aucgeographica.cz/index.php/AUC_Geographica/article/view/98/pdf_56" target="_blank" >http://www.aucgeographica.cz/index.php/AUC_Geographica/article/view/98/pdf_56</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14712/23361980.2015.94" target="_blank" >10.14712/23361980.2015.94</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).
Popis výsledku v původním jazyce
Accurate and updated land cover maps provide crucial basic information in a number of important enterprises, with sustainable development and regional planning far from the least of them. Remote sensing is probably the most efficient approach to obtaining a land cover map. However, certain intrinsic limitations limit the accuracy of automatic approaches to image classification. Classifications within highly heterogeneous urban areas are especially challenging. This study makes a presentation of multilayer perceptron (MLP), an artificial neural network (ANN), as an applicable approach to image classification. Optimal MLP architecture parameters were established by means of a training set. The resulting network was used to classify a sub-scene within ASTER imagery. The results were evaluated against a test dataset. The overall accuracy of classification was 94.8%. This is comparable to classification results from a maximum likelihood classifier (MLC) used for the same image.
Název v anglickém jazyce
A NEURAL NETS URBAN LAND COVER CLASSIFICATION: A CASE STUDY OF BRNO (CZECHIA).
Popis výsledku anglicky
Accurate and updated land cover maps provide crucial basic information in a number of important enterprises, with sustainable development and regional planning far from the least of them. Remote sensing is probably the most efficient approach to obtaining a land cover map. However, certain intrinsic limitations limit the accuracy of automatic approaches to image classification. Classifications within highly heterogeneous urban areas are especially challenging. This study makes a presentation of multilayer perceptron (MLP), an artificial neural network (ANN), as an applicable approach to image classification. Optimal MLP architecture parameters were established by means of a training set. The resulting network was used to classify a sub-scene within ASTER imagery. The results were evaluated against a test dataset. The overall accuracy of classification was 94.8%. This is comparable to classification results from a maximum likelihood classifier (MLC) used for the same image.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DE - Zemský magnetismus, geodesie, geografie
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Acta Universitatis Carolinae Geographica
ISSN
0300-5402
e-ISSN
—
Svazek periodika
50
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
153-163
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—