LAND COVER CHANGE DETECTION NEAR SMALL WATER BODIES BASED ON RGB UAV DATA: CASE STUDY OF THE POND BAROCH, CZECH REPUBLIC
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F22%3A39918949" target="_blank" >RIV/00216275:25410/22:39918949 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2022-617-2022" target="_blank" >http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2022-617-2022</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2022-617-2022" target="_blank" >10.5194/isprs-archives-XLIII-B3-2022-617-2022</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
LAND COVER CHANGE DETECTION NEAR SMALL WATER BODIES BASED ON RGB UAV DATA: CASE STUDY OF THE POND BAROCH, CZECH REPUBLIC
Popis výsledku v původním jazyce
Monitoring changes of land cover near water bodies and water bodies themselves represents a part of environment protection and management. The management can be done at the global or local level. The local level requires more detailed data, which can be collected i.e. by means of aircraft or UAV. The paper describes a case study focused on the utilization of UAV-based RGB data to monitor land cover near the pond Baroch, which is located in the Czech Republic, near the city of Pardubice. The area is specific - it is a small pond accompanied by several smaller pools and connecting canals and surrounded by meadows (often watered), reeds, bushes and some trees Used data were collected by authors by in advance planned flights in August, September, October, November, and December 2021. Support Vector Machine, Maximum Likelihood, Random Trees, and Deep Learning are used as methods to process data and detect land cover changes. Manually interpreted data are used as reference data. Because of the nature of the data (only R, G, and B bands), classification into bare land, the water, vegetation, dry vegetation, and wet vegetation classes only was used. Very high heterogeneity of the observed area, availability of RGB bands only, and very high spatial resolution (1,9 cm per pixel) led to isolated cells.
Název v anglickém jazyce
LAND COVER CHANGE DETECTION NEAR SMALL WATER BODIES BASED ON RGB UAV DATA: CASE STUDY OF THE POND BAROCH, CZECH REPUBLIC
Popis výsledku anglicky
Monitoring changes of land cover near water bodies and water bodies themselves represents a part of environment protection and management. The management can be done at the global or local level. The local level requires more detailed data, which can be collected i.e. by means of aircraft or UAV. The paper describes a case study focused on the utilization of UAV-based RGB data to monitor land cover near the pond Baroch, which is located in the Czech Republic, near the city of Pardubice. The area is specific - it is a small pond accompanied by several smaller pools and connecting canals and surrounded by meadows (often watered), reeds, bushes and some trees Used data were collected by authors by in advance planned flights in August, September, October, November, and December 2021. Support Vector Machine, Maximum Likelihood, Random Trees, and Deep Learning are used as methods to process data and detect land cover changes. Manually interpreted data are used as reference data. Because of the nature of the data (only R, G, and B bands), classification into bare land, the water, vegetation, dry vegetation, and wet vegetation classes only was used. Very high heterogeneity of the observed area, availability of RGB bands only, and very high spatial resolution (1,9 cm per pixel) led to isolated cells.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science
ISBN
—
ISSN
1682-1750
e-ISSN
2194-9034
Počet stran výsledku
7
Strana od-do
617-623
Název nakladatele
International Society for Photogrammetry and Remote Sensing
Místo vydání
GOTTINGEN
Místo konání akce
Nice
Datum konání akce
6. 6. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000855647800087