Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

LAND COVER CHANGE DETECTION NEAR SMALL WATER BODIES BASED ON RGB UAV DATA: CASE STUDY OF THE POND BAROCH, CZECH REPUBLIC

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F22%3A39918949" target="_blank" >RIV/00216275:25410/22:39918949 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2022-617-2022" target="_blank" >http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2022-617-2022</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.5194/isprs-archives-XLIII-B3-2022-617-2022" target="_blank" >10.5194/isprs-archives-XLIII-B3-2022-617-2022</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    LAND COVER CHANGE DETECTION NEAR SMALL WATER BODIES BASED ON RGB UAV DATA: CASE STUDY OF THE POND BAROCH, CZECH REPUBLIC

  • Popis výsledku v původním jazyce

    Monitoring changes of land cover near water bodies and water bodies themselves represents a part of environment protection and management. The management can be done at the global or local level. The local level requires more detailed data, which can be collected i.e. by means of aircraft or UAV. The paper describes a case study focused on the utilization of UAV-based RGB data to monitor land cover near the pond Baroch, which is located in the Czech Republic, near the city of Pardubice. The area is specific - it is a small pond accompanied by several smaller pools and connecting canals and surrounded by meadows (often watered), reeds, bushes and some trees Used data were collected by authors by in advance planned flights in August, September, October, November, and December 2021. Support Vector Machine, Maximum Likelihood, Random Trees, and Deep Learning are used as methods to process data and detect land cover changes. Manually interpreted data are used as reference data. Because of the nature of the data (only R, G, and B bands), classification into bare land, the water, vegetation, dry vegetation, and wet vegetation classes only was used. Very high heterogeneity of the observed area, availability of RGB bands only, and very high spatial resolution (1,9 cm per pixel) led to isolated cells.

  • Název v anglickém jazyce

    LAND COVER CHANGE DETECTION NEAR SMALL WATER BODIES BASED ON RGB UAV DATA: CASE STUDY OF THE POND BAROCH, CZECH REPUBLIC

  • Popis výsledku anglicky

    Monitoring changes of land cover near water bodies and water bodies themselves represents a part of environment protection and management. The management can be done at the global or local level. The local level requires more detailed data, which can be collected i.e. by means of aircraft or UAV. The paper describes a case study focused on the utilization of UAV-based RGB data to monitor land cover near the pond Baroch, which is located in the Czech Republic, near the city of Pardubice. The area is specific - it is a small pond accompanied by several smaller pools and connecting canals and surrounded by meadows (often watered), reeds, bushes and some trees Used data were collected by authors by in advance planned flights in August, September, October, November, and December 2021. Support Vector Machine, Maximum Likelihood, Random Trees, and Deep Learning are used as methods to process data and detect land cover changes. Manually interpreted data are used as reference data. Because of the nature of the data (only R, G, and B bands), classification into bare land, the water, vegetation, dry vegetation, and wet vegetation classes only was used. Very high heterogeneity of the observed area, availability of RGB bands only, and very high spatial resolution (1,9 cm per pixel) led to isolated cells.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science

  • ISBN

  • ISSN

    1682-1750

  • e-ISSN

    2194-9034

  • Počet stran výsledku

    7

  • Strana od-do

    617-623

  • Název nakladatele

    International Society for Photogrammetry and Remote Sensing

  • Místo vydání

    GOTTINGEN

  • Místo konání akce

    Nice

  • Datum konání akce

    6. 6. 2022

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000855647800087