Spectral Enhancement of Imagery for Small Inland Water Bodies Monitoring: Utilization of UAV-Based Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914997" target="_blank" >RIV/00216275:25410/19:39914997 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.jisem-journal.com/article/spectral-enhancement-of-imagery-for-small-inland-water-bodies-monitoring-utilization-of-uav-based-6346" target="_blank" >https://www.jisem-journal.com/article/spectral-enhancement-of-imagery-for-small-inland-water-bodies-monitoring-utilization-of-uav-based-6346</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.29333/jisem/6346" target="_blank" >10.29333/jisem/6346</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spectral Enhancement of Imagery for Small Inland Water Bodies Monitoring: Utilization of UAV-Based Data
Popis výsledku v původním jazyce
The article describes a way for identification of land cover types and consequently land cover changes around a small water body, which is based on spectral enhancement of RGB UAV-based data. A middle-class unmanned aerial vehicle (UAV) – DJI Phantom 3 Pro, was used for data collection. UAV represents a cheap and on-demand available solution for remote data sensing. Its utilization is limited by weather conditions and particular legal regulations must be followed. The article is focused on a monitoring of a small water body and its surrounding by spectral enhancement. Spectral indices, which are calculated only from the visible bands, are used to identify particular land cover types: Color Index of Vegetation Extraction (CIVE), Excess Green (ExG), Excess Red (ExR), Green Leaf Index (GLI), Normalized Green-Red Difference Index (NGRDI), Red-Green-Blue Vegetation Index (RGBVI), Visible Atmospherically Resistant Index (VARI), and ExG – ExR difference. Low pass filtering was used for post-processing and results were simply visualised in a form of classified raster (by natural breaks – Jenks). Even this simple spectral enhancement of imagery supports its visual interpretation. Visible spectral indices highlight particular land cover types, namely green vegetation and water surface but other types of land cover can be distinguished as well.
Název v anglickém jazyce
Spectral Enhancement of Imagery for Small Inland Water Bodies Monitoring: Utilization of UAV-Based Data
Popis výsledku anglicky
The article describes a way for identification of land cover types and consequently land cover changes around a small water body, which is based on spectral enhancement of RGB UAV-based data. A middle-class unmanned aerial vehicle (UAV) – DJI Phantom 3 Pro, was used for data collection. UAV represents a cheap and on-demand available solution for remote data sensing. Its utilization is limited by weather conditions and particular legal regulations must be followed. The article is focused on a monitoring of a small water body and its surrounding by spectral enhancement. Spectral indices, which are calculated only from the visible bands, are used to identify particular land cover types: Color Index of Vegetation Extraction (CIVE), Excess Green (ExG), Excess Red (ExR), Green Leaf Index (GLI), Normalized Green-Red Difference Index (NGRDI), Red-Green-Blue Vegetation Index (RGBVI), Visible Atmospherically Resistant Index (VARI), and ExG – ExR difference. Low pass filtering was used for post-processing and results were simply visualised in a form of classified raster (by natural breaks – Jenks). Even this simple spectral enhancement of imagery supports its visual interpretation. Visible spectral indices highlight particular land cover types, namely green vegetation and water surface but other types of land cover can be distinguished as well.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Information Systems Engineering & Management
ISSN
2468-4376
e-ISSN
—
Svazek periodika
4
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
9
Strana od-do
1-9
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—