Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Spectral Enhancement of Imagery for Small Inland Water Bodies Monitoring: Utilization of UAV-Based Data

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25410%2F19%3A39914997" target="_blank" >RIV/00216275:25410/19:39914997 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.jisem-journal.com/article/spectral-enhancement-of-imagery-for-small-inland-water-bodies-monitoring-utilization-of-uav-based-6346" target="_blank" >https://www.jisem-journal.com/article/spectral-enhancement-of-imagery-for-small-inland-water-bodies-monitoring-utilization-of-uav-based-6346</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.29333/jisem/6346" target="_blank" >10.29333/jisem/6346</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Spectral Enhancement of Imagery for Small Inland Water Bodies Monitoring: Utilization of UAV-Based Data

  • Popis výsledku v původním jazyce

    The article describes a way for identification of land cover types and consequently land cover changes around a small water body, which is based on spectral enhancement of RGB UAV-based data. A middle-class unmanned aerial vehicle (UAV) – DJI Phantom 3 Pro, was used for data collection. UAV represents a cheap and on-demand available solution for remote data sensing. Its utilization is limited by weather conditions and particular legal regulations must be followed. The article is focused on a monitoring of a small water body and its surrounding by spectral enhancement. Spectral indices, which are calculated only from the visible bands, are used to identify particular land cover types: Color Index of Vegetation Extraction (CIVE), Excess Green (ExG), Excess Red (ExR), Green Leaf Index (GLI), Normalized Green-Red Difference Index (NGRDI), Red-Green-Blue Vegetation Index (RGBVI), Visible Atmospherically Resistant Index (VARI), and ExG – ExR difference. Low pass filtering was used for post-processing and results were simply visualised in a form of classified raster (by natural breaks – Jenks). Even this simple spectral enhancement of imagery supports its visual interpretation. Visible spectral indices highlight particular land cover types, namely green vegetation and water surface but other types of land cover can be distinguished as well.

  • Název v anglickém jazyce

    Spectral Enhancement of Imagery for Small Inland Water Bodies Monitoring: Utilization of UAV-Based Data

  • Popis výsledku anglicky

    The article describes a way for identification of land cover types and consequently land cover changes around a small water body, which is based on spectral enhancement of RGB UAV-based data. A middle-class unmanned aerial vehicle (UAV) – DJI Phantom 3 Pro, was used for data collection. UAV represents a cheap and on-demand available solution for remote data sensing. Its utilization is limited by weather conditions and particular legal regulations must be followed. The article is focused on a monitoring of a small water body and its surrounding by spectral enhancement. Spectral indices, which are calculated only from the visible bands, are used to identify particular land cover types: Color Index of Vegetation Extraction (CIVE), Excess Green (ExG), Excess Red (ExR), Green Leaf Index (GLI), Normalized Green-Red Difference Index (NGRDI), Red-Green-Blue Vegetation Index (RGBVI), Visible Atmospherically Resistant Index (VARI), and ExG – ExR difference. Low pass filtering was used for post-processing and results were simply visualised in a form of classified raster (by natural breaks – Jenks). Even this simple spectral enhancement of imagery supports its visual interpretation. Visible spectral indices highlight particular land cover types, namely green vegetation and water surface but other types of land cover can be distinguished as well.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Information Systems Engineering &amp; Management

  • ISSN

    2468-4376

  • e-ISSN

  • Svazek periodika

    4

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus