Determination of the elasto-plastic material characteristics of Norway spruce and European beech wood by experimental and numerical analyses
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F16%3A43909745" target="_blank" >RIV/62156489:43410/16:43909745 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1515/hf-2015-0267" target="_blank" >http://dx.doi.org/10.1515/hf-2015-0267</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1515/hf-2015-0267" target="_blank" >10.1515/hf-2015-0267</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Determination of the elasto-plastic material characteristics of Norway spruce and European beech wood by experimental and numerical analyses
Popis výsledku v původním jazyce
Experimental and numerical analyses are presented concerning of compression tests parallel and perpendicular to the grain, three-point bending, and double-shear joints in compliance with the relevant test standards (ASTM D2395, BS 373, EN 383 and EN 26891). Woods of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) were tested to describe their non-linear behavior. Elasto-plastic material models were the basis for the finite-element (FE) analyses with the input of own experimental data and those of the literature. The elasto-plastic material model with non-linear isotropic hardening was applied based on the Hill yield criterion in regions of uniaxial compression. The material characteristics were first optimized and validated by means of basic 3D FE models under the same conditions as applied for the experiments. Afterwards, the validated material models were implemented into the solver with more complex numerical analyses of wooden dowel joints. Concurrently, the digital image correlation (DIC) served for verification of the numerical wooden joint models. A good agreement (with a relative error up to 16%) was found between numerically predicted and experimentally measured data. The differences may be mainly attributed to some natural characteristics of wood which were not considered in the proposed material models. The proposed elasto-plastic material models are capable of predicting the wood's ultimate strength, and therefore could contribute to a more reliable design of wood structures and their performance.
Název v anglickém jazyce
Determination of the elasto-plastic material characteristics of Norway spruce and European beech wood by experimental and numerical analyses
Popis výsledku anglicky
Experimental and numerical analyses are presented concerning of compression tests parallel and perpendicular to the grain, three-point bending, and double-shear joints in compliance with the relevant test standards (ASTM D2395, BS 373, EN 383 and EN 26891). Woods of Norway spruce (Picea abies L. Karst.) and European beech (Fagus sylvatica L.) were tested to describe their non-linear behavior. Elasto-plastic material models were the basis for the finite-element (FE) analyses with the input of own experimental data and those of the literature. The elasto-plastic material model with non-linear isotropic hardening was applied based on the Hill yield criterion in regions of uniaxial compression. The material characteristics were first optimized and validated by means of basic 3D FE models under the same conditions as applied for the experiments. Afterwards, the validated material models were implemented into the solver with more complex numerical analyses of wooden dowel joints. Concurrently, the digital image correlation (DIC) served for verification of the numerical wooden joint models. A good agreement (with a relative error up to 16%) was found between numerically predicted and experimentally measured data. The differences may be mainly attributed to some natural characteristics of wood which were not considered in the proposed material models. The proposed elasto-plastic material models are capable of predicting the wood's ultimate strength, and therefore could contribute to a more reliable design of wood structures and their performance.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JJ - Ostatní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Holzforschung
ISSN
0018-3830
e-ISSN
—
Svazek periodika
70
Číslo periodika v rámci svazku
11
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
12
Strana od-do
1081-1092
Kód UT WoS článku
000385809600010
EID výsledku v databázi Scopus
2-s2.0-84994097233