Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Automatic Root Length Estimation from Images Acquired In Situ without Segmentation

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62156489%3A43410%2F24%3A43924828" target="_blank" >RIV/62156489:43410/24:43924828 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.34133/plantphenomics.013" target="_blank" >https://doi.org/10.34133/plantphenomics.013</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.34133/plantphenomics.0132" target="_blank" >10.34133/plantphenomics.0132</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Automatic Root Length Estimation from Images Acquired In Situ without Segmentation

  • Popis výsledku v původním jazyce

    Image-based root phenotyping technologies, including the minirhizotron (MR), have expanded our understanding of the in situ root responses to changing environmental conditions. The conventional manual methods used to analyze MR images are time-consuming, limiting their implementation. This study presents an adaptation of our previously developed convolutional neural network-based models to estimate the total (cumulative) root length (TRL) per MR image without requiring segmentation. Training data were derived from manual annotations in Rootfly, commonly used software for MR image analysis. We compared TRL estimation with 2 models, a regression-based model and a detection-based model that detects the annotated points along the roots. Notably, the detection-based model can assist in examining human annotations by providing a visual inspection of roots in MR images. The models were trained and tested with 4,015 images acquired using 2 MR system types (manual and automated) and from 4 crop species (corn, pepper, melon, and tomato) grown under various abiotic stresses. These datasets are made publicly available as part of this publication. The coefficients of determination (R2), between the measurements made using Rootfly and the suggested TRL estimation models were 0.929 to 0.986 for the main datasets, demonstrating that this tool is accurate and robust. Additional analyses were conducted to examine the effects of (a) the data acquisition system and thus the image quality on the models&apos; performance, (b) automated differentiation between images with and without roots, and (c) the use of the transfer learning technique. These approaches can support precision agriculture by providing real-time root growth information.

  • Název v anglickém jazyce

    Automatic Root Length Estimation from Images Acquired In Situ without Segmentation

  • Popis výsledku anglicky

    Image-based root phenotyping technologies, including the minirhizotron (MR), have expanded our understanding of the in situ root responses to changing environmental conditions. The conventional manual methods used to analyze MR images are time-consuming, limiting their implementation. This study presents an adaptation of our previously developed convolutional neural network-based models to estimate the total (cumulative) root length (TRL) per MR image without requiring segmentation. Training data were derived from manual annotations in Rootfly, commonly used software for MR image analysis. We compared TRL estimation with 2 models, a regression-based model and a detection-based model that detects the annotated points along the roots. Notably, the detection-based model can assist in examining human annotations by providing a visual inspection of roots in MR images. The models were trained and tested with 4,015 images acquired using 2 MR system types (manual and automated) and from 4 crop species (corn, pepper, melon, and tomato) grown under various abiotic stresses. These datasets are made publicly available as part of this publication. The coefficients of determination (R2), between the measurements made using Rootfly and the suggested TRL estimation models were 0.929 to 0.986 for the main datasets, demonstrating that this tool is accurate and robust. Additional analyses were conducted to examine the effects of (a) the data acquisition system and thus the image quality on the models&apos; performance, (b) automated differentiation between images with and without roots, and (c) the use of the transfer learning technique. These approaches can support precision agriculture by providing real-time root growth information.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10611 - Plant sciences, botany

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Plant Phenomics

  • ISSN

    2643-6515

  • e-ISSN

    2643-6515

  • Svazek periodika

    6

  • Číslo periodika v rámci svazku

    12 January

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    15

  • Strana od-do

    0132

  • Kód UT WoS článku

    001164852800001

  • EID výsledku v databázi Scopus

    2-s2.0-85184245609