Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Let's Get Dirty: GAN Based Data Augmentation for Camera Lens Soiling Detection in Autonomous Driving

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21730%2F21%3A00345651" target="_blank" >RIV/68407700:21730/21:00345651 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1109/WACV48630.2021.00081" target="_blank" >https://doi.org/10.1109/WACV48630.2021.00081</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/WACV48630.2021.00081" target="_blank" >10.1109/WACV48630.2021.00081</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Let's Get Dirty: GAN Based Data Augmentation for Camera Lens Soiling Detection in Autonomous Driving

  • Popis výsledku v původním jazyce

    Wide-angle fisheye cameras are commonly used in automated driving for parking and low-speed navigation tasks. Four of such cameras form a surround-view system that provides a complete and detailed view of the vehicle. These cameras are directly exposed to harsh environmental settings and can get soiled very easily by mud, dust, water, frost. Soiling on the camera lens can severely degrade the visual perception algorithms, and a camera cleaning system triggered by a soiling detection algorithm is increasingly being deployed. While adverse weather conditions, such as rain, are getting attention recently, there is only limited work on general soiling. The main reason is the difficulty in collecting a diverse dataset as it is a relatively rare event. We propose a novel GAN based algorithm for generating unseen patterns of soiled images. Additionally, the proposed method automatically provides the corresponding soiling masks eliminating the manual annotation cost. Augmentation of the generated soiled images for training improves the accuracy of soiling detection tasks significantly by 18% demonstrating its usefulness. The manually annotated soiling dataset and the generated augmentation dataset will be made public. We demonstrate the generalization of our fisheye trained GAN model on the Cityscapes dataset. We provide an empirical evaluation of the degradation of the semantic segmentation algorithm with the soiled data.

  • Název v anglickém jazyce

    Let's Get Dirty: GAN Based Data Augmentation for Camera Lens Soiling Detection in Autonomous Driving

  • Popis výsledku anglicky

    Wide-angle fisheye cameras are commonly used in automated driving for parking and low-speed navigation tasks. Four of such cameras form a surround-view system that provides a complete and detailed view of the vehicle. These cameras are directly exposed to harsh environmental settings and can get soiled very easily by mud, dust, water, frost. Soiling on the camera lens can severely degrade the visual perception algorithms, and a camera cleaning system triggered by a soiling detection algorithm is increasingly being deployed. While adverse weather conditions, such as rain, are getting attention recently, there is only limited work on general soiling. The main reason is the difficulty in collecting a diverse dataset as it is a relatively rare event. We propose a novel GAN based algorithm for generating unseen patterns of soiled images. Additionally, the proposed method automatically provides the corresponding soiling masks eliminating the manual annotation cost. Augmentation of the generated soiled images for training improves the accuracy of soiling detection tasks significantly by 18% demonstrating its usefulness. The manually annotated soiling dataset and the generated augmentation dataset will be made public. We demonstrate the generalization of our fisheye trained GAN model on the Cityscapes dataset. We provide an empirical evaluation of the degradation of the semantic segmentation algorithm with the soiled data.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 2021

  • ISBN

    978-0-7381-4266-1

  • ISSN

    2472-6737

  • e-ISSN

    2642-9381

  • Počet stran výsledku

    10

  • Strana od-do

    766-775

  • Název nakladatele

    IEEE Computer Society

  • Místo vydání

    USA

  • Místo konání akce

    Waikoloa, HI

  • Datum konání akce

    5. 1. 2021

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000692171000077