Efficient dataset extension using generative networks for assessing degree of coating degradation around scribe
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F24%3A39922176" target="_blank" >RIV/00216275:25530/24:39922176 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/full" target="_blank" >https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2024.1456844/full</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3389/frai.2024.1456844" target="_blank" >10.3389/frai.2024.1456844</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Efficient dataset extension using generative networks for assessing degree of coating degradation around scribe
Popis výsledku v původním jazyce
A novel methodology for dataset augmentation in the semantic segmentation of coil-coated surface degradation is presented in this study. Deep convolutional generative adversarial networks (DCGAN) are employed to generate synthetic input-target pairs, which closely resemble real-world data, with the goal of expanding an existing dataset. These augmented datasets are used to train two state-of-the-art models, U-net, and DeepLabV3, for the precise detection of degradation areas around scribes. In a series of experiments, it was demonstrated that the introduction of synthetic data improves the models' performance in detecting degradation, especially when the ratio of synthetic to real data is carefully managed. Results indicate that optimal improvements in accuracy and F1-score are achieved when the ratio of synthetic to original data is between 0.2 and 0.5. Moreover, the advantages and limitations of different GAN architectures for dataset expansion are explored, with specific attention to their ability to produce realistic and diverse samples. This work offers a scalable solution to the challenges associated with creating large and diverse annotated datasets for industrial applications of coil coating degradation assessment. The proposed approach provides a significant contribution by improving model generalization and segmentation accuracy while reducing the burden of manual data annotation. These findings have important implications for industries relying on coil coatings, as more efficient and accurate degradation detection methods are enabled.
Název v anglickém jazyce
Efficient dataset extension using generative networks for assessing degree of coating degradation around scribe
Popis výsledku anglicky
A novel methodology for dataset augmentation in the semantic segmentation of coil-coated surface degradation is presented in this study. Deep convolutional generative adversarial networks (DCGAN) are employed to generate synthetic input-target pairs, which closely resemble real-world data, with the goal of expanding an existing dataset. These augmented datasets are used to train two state-of-the-art models, U-net, and DeepLabV3, for the precise detection of degradation areas around scribes. In a series of experiments, it was demonstrated that the introduction of synthetic data improves the models' performance in detecting degradation, especially when the ratio of synthetic to real data is carefully managed. Results indicate that optimal improvements in accuracy and F1-score are achieved when the ratio of synthetic to original data is between 0.2 and 0.5. Moreover, the advantages and limitations of different GAN architectures for dataset expansion are explored, with specific attention to their ability to produce realistic and diverse samples. This work offers a scalable solution to the challenges associated with creating large and diverse annotated datasets for industrial applications of coil coating degradation assessment. The proposed approach provides a significant contribution by improving model generalization and segmentation accuracy while reducing the burden of manual data annotation. These findings have important implications for industries relying on coil coatings, as more efficient and accurate degradation detection methods are enabled.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20200 - Electrical engineering, Electronic engineering, Information engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Frontiers in Artificial Intelligence
ISSN
2624-8212
e-ISSN
2624-8212
Svazek periodika
7
Číslo periodika v rámci svazku
2024
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
1-14
Kód UT WoS článku
001383552200001
EID výsledku v databázi Scopus
2-s2.0-85213020166