The Zero-One Knapsack Problem and Genetic Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F01%3A6364" target="_blank" >RIV/62690094:18450/01:6364 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Zero-One Knapsack Problem and Genetic Algorithms
Popis výsledku v původním jazyce
The zero-one knapsack problem is a classical combinatorial problem that has been tackled by various problem solving strategies. This paper was inspired by numerous attempts to solve the problem using genetic algorithms. The problem is very often used asa "good example" of genetic algorithms utilization without any reference to traditional methods that are well known in operation research community. Our aim here is to compare the performance of genetic algorithms and branch-and-bound method on this problem. From our results it is obvious that the simple traditional method outperforms the genetic algorithms in terms of finding optimal solution as well as finding it quickly. Therefore we need a better understandingof which problems are suitable to be tackled by genetic algorithms. We must look for the problems where traditional methods fail and where evolutionary algorithms will have a good chance of being competitive.
Název v anglickém jazyce
The Zero-One Knapsack Problem and Genetic Algorithms
Popis výsledku anglicky
The zero-one knapsack problem is a classical combinatorial problem that has been tackled by various problem solving strategies. This paper was inspired by numerous attempts to solve the problem using genetic algorithms. The problem is very often used asa "good example" of genetic algorithms utilization without any reference to traditional methods that are well known in operation research community. Our aim here is to compare the performance of genetic algorithms and branch-and-bound method on this problem. From our results it is obvious that the simple traditional method outperforms the genetic algorithms in terms of finding optimal solution as well as finding it quickly. Therefore we need a better understandingof which problems are suitable to be tackled by genetic algorithms. We must look for the problems where traditional methods fail and where evolutionary algorithms will have a good chance of being competitive.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JC - Počítačový hardware a software
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2001
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical Methods in Economics (MME 2001)
ISBN
80-245-0196-1
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
73-78
Název nakladatele
VŠE Praha
Místo vydání
Praha
Místo konání akce
Hradec Králové
Datum konání akce
1. 1. 2001
Typ akce podle státní příslušnosti
CST - Celostátní akce
Kód UT WoS článku
—