Application of Genetic Algorithms in Stock Market Simulation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F12%3A50000214" target="_blank" >RIV/62690094:18450/12:50000214 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.sbspro.2012.06.619" target="_blank" >http://dx.doi.org/10.1016/j.sbspro.2012.06.619</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sbspro.2012.06.619" target="_blank" >10.1016/j.sbspro.2012.06.619</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of Genetic Algorithms in Stock Market Simulation
Popis výsledku v původním jazyce
Development of stock market is affected by many factors. It is difficult to predict changes in prices of stocks because of many parameters in behavioral algorithms. There is also problem with learning soft-skills because of many variables. Application ofgenetic algorithms can help find suitable pre-set of behavioral patterns, functions and its parameters. In this paper we describe creation and implementation genetic algorithms to existing multi-agent simulation. This existing simulation provides basicmodel of simulation of stock market members behavior. The main goal of this article is describe how to implement genetic algorithm into this type of simulation. The main advantage of using genetic algorithms is dynamically created decision process or function of each agent. Article describes process of creating decision, simulating behavior of agents which decision algorithm was created by genetic programming. Next point is to show, how can be this implementation of genetic algorithms us
Název v anglickém jazyce
Application of Genetic Algorithms in Stock Market Simulation
Popis výsledku anglicky
Development of stock market is affected by many factors. It is difficult to predict changes in prices of stocks because of many parameters in behavioral algorithms. There is also problem with learning soft-skills because of many variables. Application ofgenetic algorithms can help find suitable pre-set of behavioral patterns, functions and its parameters. In this paper we describe creation and implementation genetic algorithms to existing multi-agent simulation. This existing simulation provides basicmodel of simulation of stock market members behavior. The main goal of this article is describe how to implement genetic algorithm into this type of simulation. The main advantage of using genetic algorithms is dynamically created decision process or function of each agent. Article describes process of creating decision, simulating behavior of agents which decision algorithm was created by genetic programming. Next point is to show, how can be this implementation of genetic algorithms us
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Procedia - social and behavioral sciences
ISSN
1877-0428
e-ISSN
—
Svazek periodika
2012
Číslo periodika v rámci svazku
47
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
5
Strana od-do
93-97
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—