Usage of the extremal algebra in solving the travelling salesman problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F12%3A50001880" target="_blank" >RIV/62690094:18450/12:50001880 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Usage of the extremal algebra in solving the travelling salesman problem
Popis výsledku v původním jazyce
This article compares many ways of solving the traveling salesman problem. At first classical heuristic methods and methods using graph theory are mentioned. At the first part many universal methods are described, which can be also used in other transportation problems. The traveling salesman problem is solved by using genetic algorithm in the second part of this article. This algorithm generates at the beginning the first generation, chooses five thousand parents by the roulette method, crosses these pairs and determines the next generation. This process continues with next generations until stabilization. The algorithm is demonstrated on two examples. At the final part extremal algebras, max-plus algebra and max-min algebra, are defined and illustrated by examples. Monge matrices and some their properties are described in these algebras. The optimization of the traveling salesman problem, which leads to a reduction of the computation complexity, is described for these matrices. The o
Název v anglickém jazyce
Usage of the extremal algebra in solving the travelling salesman problem
Popis výsledku anglicky
This article compares many ways of solving the traveling salesman problem. At first classical heuristic methods and methods using graph theory are mentioned. At the first part many universal methods are described, which can be also used in other transportation problems. The traveling salesman problem is solved by using genetic algorithm in the second part of this article. This algorithm generates at the beginning the first generation, chooses five thousand parents by the roulette method, crosses these pairs and determines the next generation. This process continues with next generations until stabilization. The algorithm is demonstrated on two examples. At the final part extremal algebras, max-plus algebra and max-min algebra, are defined and illustrated by examples. Monge matrices and some their properties are described in these algebras. The optimization of the traveling salesman problem, which leads to a reduction of the computation complexity, is described for these matrices. The o
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
O - Projekt operacniho programu
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Mathematical methods in economics : proceedings of 30th international conference
ISBN
978-80-7248-779-0
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
733-738
Název nakladatele
Slezská univerzita. Obchodně podnikatelská fakulta
Místo vydání
Karviná
Místo konání akce
Karviná
Datum konání akce
11. 1. 2012
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000316715900126