Simulations of light propagation and thermal response in biological tissues accelerated by graphics processing unit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F16%3A50005010" target="_blank" >RIV/62690094:18450/16:50005010 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-45246-3_23" target="_blank" >http://dx.doi.org/10.1007/978-3-319-45246-3_23</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-45246-3_23" target="_blank" >10.1007/978-3-319-45246-3_23</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Simulations of light propagation and thermal response in biological tissues accelerated by graphics processing unit
Popis výsledku v původním jazyce
In this paper we report on a prototype program for laser-tissue interaction simulation accelerated by graphics processing unit (GPU). We developed a Monte Carlo (MC) model for photon migration in arbitrary shaped turbid media which simulates the light flux inside biological tissues to solve the thermal source term in Pennes' bioheat transfer equation (PBTE). Since both problems are highly parallelizable, we have transformed the underlying mathematical formalism into an OpenCL language code to reduce the computational time-costs. Comparing to sequential implementation, speedup of 210 was achieved in our simulation with GPU. Acceleration benefits are demonstrated separately for MC and PBTE and also for single simulation with both models. The simulation results were obtained in real-time allowing the effective usage in laser interstitial thermal therapy for thermal damage evaluation.
Název v anglickém jazyce
Simulations of light propagation and thermal response in biological tissues accelerated by graphics processing unit
Popis výsledku anglicky
In this paper we report on a prototype program for laser-tissue interaction simulation accelerated by graphics processing unit (GPU). We developed a Monte Carlo (MC) model for photon migration in arbitrary shaped turbid media which simulates the light flux inside biological tissues to solve the thermal source term in Pennes' bioheat transfer equation (PBTE). Since both problems are highly parallelizable, we have transformed the underlying mathematical formalism into an OpenCL language code to reduce the computational time-costs. Comparing to sequential implementation, speedup of 210 was achieved in our simulation with GPU. Acceleration benefits are demonstrated separately for MC and PBTE and also for single simulation with both models. The simulation results were obtained in real-time allowing the effective usage in laser interstitial thermal therapy for thermal damage evaluation.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational collective intelligence. Part II.
ISSN
0302-9743
e-ISSN
—
Svazek periodika
9876
Číslo periodika v rámci svazku
2016
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
10
Strana od-do
242-251
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-84989855586