Interactive evolutionary optimization of fuzzy cognitive maps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50005185" target="_blank" >RIV/62690094:18450/17:50005185 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0925231216315636" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925231216315636</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neucom.2016.10.068" target="_blank" >10.1016/j.neucom.2016.10.068</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Interactive evolutionary optimization of fuzzy cognitive maps
Popis výsledku v původním jazyce
Modeling dynamic systems with Fuzzy Cognitive Maps (FCMs) is characterized by the simplicity of the model representation and its execution. Furthermore, FCMs can easily incorporate human knowledge from the given domain. Despite the many advantages of FCMs, there are some drawbacks, too. The quality of knowledge obtained from the domain experts, and any differences and uncertainties in their opinions, has to be improved by different methods. We propose a new approach for handling incompleteness and natural uncertainty in expert evaluation of the connection matrix of a particular FCM. It is based on partial expert estimations and evolutionary algorithms in the role of an expert-driven optimization and outside of the FCM optimization (adaptation) research area known as Interactive Evolutionary Computing (IEC). In the present paper, a modification of IEC for the purposes of FCM optimization is presented, referred to as the IEO-FCM method, i.e., the Interactive Evolutionary Optimization of Fuzzy Cognitive Maps. Experimental results on two control problems suggest that the IEO-FCM method can improve the quality of an FCM even in situations without any measured data necessary for other known learning algorithms.
Název v anglickém jazyce
Interactive evolutionary optimization of fuzzy cognitive maps
Popis výsledku anglicky
Modeling dynamic systems with Fuzzy Cognitive Maps (FCMs) is characterized by the simplicity of the model representation and its execution. Furthermore, FCMs can easily incorporate human knowledge from the given domain. Despite the many advantages of FCMs, there are some drawbacks, too. The quality of knowledge obtained from the domain experts, and any differences and uncertainties in their opinions, has to be improved by different methods. We propose a new approach for handling incompleteness and natural uncertainty in expert evaluation of the connection matrix of a particular FCM. It is based on partial expert estimations and evolutionary algorithms in the role of an expert-driven optimization and outside of the FCM optimization (adaptation) research area known as Interactive Evolutionary Computing (IEC). In the present paper, a modification of IEC for the purposes of FCM optimization is presented, referred to as the IEO-FCM method, i.e., the Interactive Evolutionary Optimization of Fuzzy Cognitive Maps. Experimental results on two control problems suggest that the IEO-FCM method can improve the quality of an FCM even in situations without any measured data necessary for other known learning algorithms.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
—
Svazek periodika
232
Číslo periodika v rámci svazku
April 2017
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
58-68
Kód UT WoS článku
000393532800006
EID výsledku v databázi Scopus
2-s2.0-85009286617