Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Interactive evolutionary optimization of fuzzy cognitive maps

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50005185" target="_blank" >RIV/62690094:18450/17:50005185 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0925231216315636" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925231216315636</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.neucom.2016.10.068" target="_blank" >10.1016/j.neucom.2016.10.068</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Interactive evolutionary optimization of fuzzy cognitive maps

  • Popis výsledku v původním jazyce

    Modeling dynamic systems with Fuzzy Cognitive Maps (FCMs) is characterized by the simplicity of the model representation and its execution. Furthermore, FCMs can easily incorporate human knowledge from the given domain. Despite the many advantages of FCMs, there are some drawbacks, too. The quality of knowledge obtained from the domain experts, and any differences and uncertainties in their opinions, has to be improved by different methods. We propose a new approach for handling incompleteness and natural uncertainty in expert evaluation of the connection matrix of a particular FCM. It is based on partial expert estimations and evolutionary algorithms in the role of an expert-driven optimization and outside of the FCM optimization (adaptation) research area known as Interactive Evolutionary Computing (IEC). In the present paper, a modification of IEC for the purposes of FCM optimization is presented, referred to as the IEO-FCM method, i.e., the Interactive Evolutionary Optimization of Fuzzy Cognitive Maps. Experimental results on two control problems suggest that the IEO-FCM method can improve the quality of an FCM even in situations without any measured data necessary for other known learning algorithms.

  • Název v anglickém jazyce

    Interactive evolutionary optimization of fuzzy cognitive maps

  • Popis výsledku anglicky

    Modeling dynamic systems with Fuzzy Cognitive Maps (FCMs) is characterized by the simplicity of the model representation and its execution. Furthermore, FCMs can easily incorporate human knowledge from the given domain. Despite the many advantages of FCMs, there are some drawbacks, too. The quality of knowledge obtained from the domain experts, and any differences and uncertainties in their opinions, has to be improved by different methods. We propose a new approach for handling incompleteness and natural uncertainty in expert evaluation of the connection matrix of a particular FCM. It is based on partial expert estimations and evolutionary algorithms in the role of an expert-driven optimization and outside of the FCM optimization (adaptation) research area known as Interactive Evolutionary Computing (IEC). In the present paper, a modification of IEC for the purposes of FCM optimization is presented, referred to as the IEO-FCM method, i.e., the Interactive Evolutionary Optimization of Fuzzy Cognitive Maps. Experimental results on two control problems suggest that the IEO-FCM method can improve the quality of an FCM even in situations without any measured data necessary for other known learning algorithms.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Neurocomputing

  • ISSN

    0925-2312

  • e-ISSN

  • Svazek periodika

    232

  • Číslo periodika v rámci svazku

    April 2017

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    58-68

  • Kód UT WoS článku

    000393532800006

  • EID výsledku v databázi Scopus

    2-s2.0-85009286617