Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013459" target="_blank" >RIV/62690094:18450/17:50013459 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0925231216315661" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0925231216315661</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.neucom.2016.10.070" target="_blank" >10.1016/j.neucom.2016.10.070</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes
Popis výsledku v původním jazyce
In this paper, we propose a Fuzzy Cognitive Map (FCM) learning approach with a multi-local search in balanced memetic algorithms for forecasting industrial drying processes. The first contribution of this paper is to propose a FCM model by an Evolutionary Algorithm (EA), but the resulted FCM model is improved by a multi-local and balanced local search algorithm. Memetic algorithms can be tuned with different local search strategies (CMA-ES, SW, SSW and Simplex) and the balance of the effort between global and local search. To do this, we applied the proposed approach to the forecasting of moisture loss in industrial drying process. The thermal drying process is a relevant one used in many industrial processes such as food industry, biofuels production, detergents and dyes in powder production, pharmaceutical industry, reprography applications, textile industries, and others. This research also shows that exploration of the search space is more relevant than finding local optima in the FCM models tested.
Název v anglickém jazyce
Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes
Popis výsledku anglicky
In this paper, we propose a Fuzzy Cognitive Map (FCM) learning approach with a multi-local search in balanced memetic algorithms for forecasting industrial drying processes. The first contribution of this paper is to propose a FCM model by an Evolutionary Algorithm (EA), but the resulted FCM model is improved by a multi-local and balanced local search algorithm. Memetic algorithms can be tuned with different local search strategies (CMA-ES, SW, SSW and Simplex) and the balance of the effort between global and local search. To do this, we applied the proposed approach to the forecasting of moisture loss in industrial drying process. The thermal drying process is a relevant one used in many industrial processes such as food industry, biofuels production, detergents and dyes in powder production, pharmaceutical industry, reprography applications, textile industries, and others. This research also shows that exploration of the search space is more relevant than finding local optima in the FCM models tested.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neurocomputing
ISSN
0925-2312
e-ISSN
—
Svazek periodika
232
Číslo periodika v rámci svazku
April 5
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
6
Strana od-do
52-57
Kód UT WoS článku
000393532800005
EID výsledku v databázi Scopus
2-s2.0-85008502691