Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Method for Simplification of Complex Group Causal Loop Diagrams Based on Endogenisation, Encapsulation and Order-Oriented Reduction

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013469" target="_blank" >RIV/62690094:18450/17:50013469 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.mdpi.com/2079-8954/5/3/46/htm" target="_blank" >http://www.mdpi.com/2079-8954/5/3/46/htm</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/systems5030046" target="_blank" >10.3390/systems5030046</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Method for Simplification of Complex Group Causal Loop Diagrams Based on Endogenisation, Encapsulation and Order-Oriented Reduction

  • Popis výsledku v původním jazyce

    Growing complexity represents an issue that can be identified in various disciplines. In system dynamics, causal loop diagrams are used for capturing dynamic nature of modelled systems. Increasing complexity of developed diagrams is associated with the tendency to include more variables into a model and thus make it more realistic and improve its value. This is even multiplied during group modelling workshops where several perspectives are articulated, shared and complex diagrams developed. This process easily generates complex diagrams that are difficult or even impossible to be comprehended by individuals. As there is a lack of available methods that would help users to cope with growing complexity, this manuscript suggests an original method. The proposed method systematically helps to simplify the complex causal loop diagrams. It is based on three activities iteratively applied during particular steps: endogenisation, encapsulation and order-oriented reduction. Two case studies are used to explain method details, prove its applicability and highlight added value. Case studies include the simplification of both original group causal loop diagram, and group diagram adapted from a study already published in a prestigious journal. Although the presented method has its own limitations, meaningfulness of its application in practice is verified. The method can help to cope with the complexity in any domain, in which causal loop diagrams are used.

  • Název v anglickém jazyce

    A Method for Simplification of Complex Group Causal Loop Diagrams Based on Endogenisation, Encapsulation and Order-Oriented Reduction

  • Popis výsledku anglicky

    Growing complexity represents an issue that can be identified in various disciplines. In system dynamics, causal loop diagrams are used for capturing dynamic nature of modelled systems. Increasing complexity of developed diagrams is associated with the tendency to include more variables into a model and thus make it more realistic and improve its value. This is even multiplied during group modelling workshops where several perspectives are articulated, shared and complex diagrams developed. This process easily generates complex diagrams that are difficult or even impossible to be comprehended by individuals. As there is a lack of available methods that would help users to cope with growing complexity, this manuscript suggests an original method. The proposed method systematically helps to simplify the complex causal loop diagrams. It is based on three activities iteratively applied during particular steps: endogenisation, encapsulation and order-oriented reduction. Two case studies are used to explain method details, prove its applicability and highlight added value. Case studies include the simplification of both original group causal loop diagram, and group diagram adapted from a study already published in a prestigious journal. Although the presented method has its own limitations, meaningfulness of its application in practice is verified. The method can help to cope with the complexity in any domain, in which causal loop diagrams are used.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Systems

  • ISSN

    2079-8954

  • e-ISSN

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    22

  • Strana od-do

    1-22

  • Kód UT WoS článku

    000412048000004

  • EID výsledku v databázi Scopus