Optimization of the tasks and virtual machines allocation problem
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50013581" target="_blank" >RIV/62690094:18450/17:50013581 - isvavai.cz</a>
Výsledek na webu
<a href="http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf" target="_blank" >http://fim2.uhk.cz/mme/conferenceproceedings/mme2017_conference_proceedings.pdf</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of the tasks and virtual machines allocation problem
Popis výsledku v původním jazyce
The tasks and virtual machines allocation are one of the most important problems in efficient use of IT infrastructure including the physical, virtualization or computing technology. Depending on the exact setup of the computing scenario, the optimization problem can be stated in different ways. Most optimization works concern single data centers, multiple infrastructure-as-a-service (IAAS) systems, virtual machine - physical machine assignment problem and task allocation. Much work at the above problems has been done and interesting results have been found. Yet, several aspects were neglected and need to be addressed in more details. Traditional distribution of task or virtual machine allocation is based on simple load balancing techniques, e.g. round robin, in coming data stream selection, etc. This kind of distribution does not reflect the real utilization of resource or problem such as communication between virtual machines, virtual machine co-location interference, composition of power consumption optimization at multiple levels of components, or physical machine with multi-core CPU. The paper is focused on implementation of online bin packing algorithm for workload optimization based on computing task categorization.
Název v anglickém jazyce
Optimization of the tasks and virtual machines allocation problem
Popis výsledku anglicky
The tasks and virtual machines allocation are one of the most important problems in efficient use of IT infrastructure including the physical, virtualization or computing technology. Depending on the exact setup of the computing scenario, the optimization problem can be stated in different ways. Most optimization works concern single data centers, multiple infrastructure-as-a-service (IAAS) systems, virtual machine - physical machine assignment problem and task allocation. Much work at the above problems has been done and interesting results have been found. Yet, several aspects were neglected and need to be addressed in more details. Traditional distribution of task or virtual machine allocation is based on simple load balancing techniques, e.g. round robin, in coming data stream selection, etc. This kind of distribution does not reflect the real utilization of resource or problem such as communication between virtual machines, virtual machine co-location interference, composition of power consumption optimization at multiple levels of components, or physical machine with multi-core CPU. The paper is focused on implementation of online bin packing algorithm for workload optimization based on computing task categorization.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
35th International Conference Mathematical Methods in Economics
ISBN
978-80-7435-678-0
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
6
Strana od-do
590-595
Název nakladatele
Univerzita Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
13. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000427151400101