Segmentation based on gabor transformation with machine learning: Modeling of retinal blood vessels system from retcam images and tortuosity extraction
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F17%3A50014267" target="_blank" >RIV/62690094:18450/17:50014267 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27240/17:10237654
Výsledek na webu
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-270" target="_blank" >http://dx.doi.org/10.3233/978-1-61499-800-6-270</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/978-1-61499-800-6-270" target="_blank" >10.3233/978-1-61499-800-6-270</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Segmentation based on gabor transformation with machine learning: Modeling of retinal blood vessels system from retcam images and tortuosity extraction
Popis výsledku v původním jazyce
In a field of the clinical ophthalmology, an analysis of the retinal blood vessels is one of the major assessments in the retinal system. Retinal blood vessels system is clinically imagined either by the fundus camera or retinal probe (RetCam 3 system). The tortuosity is important parameter assessing blood vessel curvature. Unfortunately, this parameter is usually subjectively estimated in the retinal image analysis. The main aim of the analysis is an automatic segmentation with consequent extraction and modelling of the retinal blood vessels system from RetCam 3 in the form of the binary model. Segmentation algorithm utilizes the Gabor wavelet transformation (GT) giving segmentation results for individual parameters setting. Consequent retinal blood vessels classification is carried out on the base of the linear regression with gold standard. The gold standard represents a manually labelled segmentation by the ophthalmologic experts. Binary segmentation model precisely approximates blood vessels area from other structures. This model allows for the tortuosity extraction in a form of the gradient image where each blood vessel element is described by its steepness.
Název v anglickém jazyce
Segmentation based on gabor transformation with machine learning: Modeling of retinal blood vessels system from retcam images and tortuosity extraction
Popis výsledku anglicky
In a field of the clinical ophthalmology, an analysis of the retinal blood vessels is one of the major assessments in the retinal system. Retinal blood vessels system is clinically imagined either by the fundus camera or retinal probe (RetCam 3 system). The tortuosity is important parameter assessing blood vessel curvature. Unfortunately, this parameter is usually subjectively estimated in the retinal image analysis. The main aim of the analysis is an automatic segmentation with consequent extraction and modelling of the retinal blood vessels system from RetCam 3 in the form of the binary model. Segmentation algorithm utilizes the Gabor wavelet transformation (GT) giving segmentation results for individual parameters setting. Consequent retinal blood vessels classification is carried out on the base of the linear regression with gold standard. The gold standard represents a manually labelled segmentation by the ophthalmologic experts. Binary segmentation model precisely approximates blood vessels area from other structures. This model allows for the tortuosity extraction in a form of the gradient image where each blood vessel element is described by its steepness.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA17-03037S" target="_blank" >GA17-03037S: Hodnocení investic do vývoje zdravotních prostředků</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Frontiers in Artificial Intelligence and Applications
ISBN
978-1-61499-799-3
ISSN
0922-6389
e-ISSN
neuvedeno
Počet stran výsledku
14
Strana od-do
270-283
Název nakladatele
IOS Press
Místo vydání
Kitakyushu
Místo konání akce
Kitakyushu; Japan
Datum konání akce
26. 9. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—