Analytic hierarchy process in artificial life model based on fuzzy cognitive maps
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50005427" target="_blank" >RIV/62690094:18450/18:50005427 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.3233/AIS-180480" target="_blank" >http://dx.doi.org/10.3233/AIS-180480</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3233/AIS-180480" target="_blank" >10.3233/AIS-180480</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analytic hierarchy process in artificial life model based on fuzzy cognitive maps
Popis výsledku v původním jazyce
The paper describes a new approach to the modeling of individual-based artificial life models based on fuzzy cognitive maps (FCMs). The proposed concept focuses on the optimization of the artificial intelligence of individuals in multi-agent models and their adaptation to an environment. The emphasis is put on the decision-making method. FCMs offer great complexity and may be extended for learning through evolutionary algorithms. However, large FCMs suffer from high computational performance issues. This paper presents the possibility of replacing the decision-making part of an FCM with the analytic hierarchy process (AHP) method, which is widely used for decision support. Some sections in FCMs are often unused or insignificant for individuals’ behavior. Since AHP needs fewer inputs to make decisions on the same set of possible actions, this approach offers lower demands but also fewer possibilities for the development of behavior. This paper describes a transformation of an FCM into a combination of both these methods (FCM-AHP) and tests strengths and weaknesses of the approaches in the artificial life model. In comparison to the larger FCM, FCM-AHP provides a model with significantly lower computational demands while keeping nearly the same complexity.
Název v anglickém jazyce
Analytic hierarchy process in artificial life model based on fuzzy cognitive maps
Popis výsledku anglicky
The paper describes a new approach to the modeling of individual-based artificial life models based on fuzzy cognitive maps (FCMs). The proposed concept focuses on the optimization of the artificial intelligence of individuals in multi-agent models and their adaptation to an environment. The emphasis is put on the decision-making method. FCMs offer great complexity and may be extended for learning through evolutionary algorithms. However, large FCMs suffer from high computational performance issues. This paper presents the possibility of replacing the decision-making part of an FCM with the analytic hierarchy process (AHP) method, which is widely used for decision support. Some sections in FCMs are often unused or insignificant for individuals’ behavior. Since AHP needs fewer inputs to make decisions on the same set of possible actions, this approach offers lower demands but also fewer possibilities for the development of behavior. This paper describes a transformation of an FCM into a combination of both these methods (FCM-AHP) and tests strengths and weaknesses of the approaches in the artificial life model. In comparison to the larger FCM, FCM-AHP provides a model with significantly lower computational demands while keeping nearly the same complexity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of ambient intelligence and smart environments
ISSN
1876-1364
e-ISSN
—
Svazek periodika
10
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
15
Strana od-do
127-141
Kód UT WoS článku
000428368600003
EID výsledku v databázi Scopus
—