Fuzzy cognitive maps for decision-making in dynamic environments
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50016765" target="_blank" >RIV/62690094:18450/21:50016765 - isvavai.cz</a>
Výsledek na webu
<a href="https://rdcu.be/b4q6E" target="_blank" >https://rdcu.be/b4q6E</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s10710-020-09393-2" target="_blank" >10.1007/s10710-020-09393-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Fuzzy cognitive maps for decision-making in dynamic environments
Popis výsledku v původním jazyce
This paper describes a new modification of fuzzy cognitive maps (FCMs) for the modeling of autonomous entities that make decisions in a dynamic environment. The paper offers a general design for an FCM adjusted for the decision-making of autonomous agents through the categorization of its concepts into three different classes according to their purpose in the map: Needs, Activities, and States (FCM-NAS). The classification enables features supporting decision-making, such as the easy processing of input from sensors, faster system reactions, the modeling of inner needs, the adjustable frequency of computations in a simulation, and self-evaluation of the FCM-NAS that supports unsupervised evolutionary learning. This paper presents two use cases of the proposed extension to demonstrate its abilities. It was implemented into an agent-based artificial life model, where it took advantage of all the above features in the competition for resources, natural selection, and evolution. Then, it was used as decision-making for human activity simulation in an ambient intelligence model, where it is combined with scenario-oriented mechanism proving its modularity.
Název v anglickém jazyce
Fuzzy cognitive maps for decision-making in dynamic environments
Popis výsledku anglicky
This paper describes a new modification of fuzzy cognitive maps (FCMs) for the modeling of autonomous entities that make decisions in a dynamic environment. The paper offers a general design for an FCM adjusted for the decision-making of autonomous agents through the categorization of its concepts into three different classes according to their purpose in the map: Needs, Activities, and States (FCM-NAS). The classification enables features supporting decision-making, such as the easy processing of input from sensors, faster system reactions, the modeling of inner needs, the adjustable frequency of computations in a simulation, and self-evaluation of the FCM-NAS that supports unsupervised evolutionary learning. This paper presents two use cases of the proposed extension to demonstrate its abilities. It was implemented into an agent-based artificial life model, where it took advantage of all the above features in the competition for resources, natural selection, and evolution. Then, it was used as decision-making for human activity simulation in an ambient intelligence model, where it is combined with scenario-oriented mechanism proving its modularity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Genetic programming and evolvable machines
ISSN
1389-2576
e-ISSN
—
Svazek periodika
22
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
35
Strana od-do
101-135
Kód UT WoS článku
000558751900001
EID výsledku v databázi Scopus
2-s2.0-85085479714