A comparative study on chrominance based methods in dorsal hand recognition: Single image case
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F18%3A50014705" target="_blank" >RIV/62690094:18450/18:50014705 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-319-92058-0_68" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-319-92058-0_68</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-92058-0_68" target="_blank" >10.1007/978-3-319-92058-0_68</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study on chrominance based methods in dorsal hand recognition: Single image case
Popis výsledku v původním jazyce
Dorsal hand recognition is a crucial topic in biometrics and human-machine interaction; however most of the identification systems identify and segment the hands from the images consisting of high contrast backgrounds. In other words, capturing and analyzing images of hands on a white or black or any colored background is way too easy to achieve high accuracy. On the contrary, in continuous authentication or in interactive human-machine systems, it can be not possible nor feasible to process high contrast images, like hands on computer keyboards which is not as simple as single color backgrounds even the feature to be extracted is solely the hand color. Therefore we deal with processing of the images consisting of hands on computer keyboards to compare various luminance and chrominance methods by YCbCr color space extraction and to find ways to achieve higher accuracy without any succeeding erosion, dilation or filtering. The methods focused on chromatic intervals could be summarized as: fixed intervals, covariance intervals and fuzzy 2-means. Our main contribution briefly is a necessary accuracy comparison and validation of the common methods on the single images. The highest accuracy is found as 96% by fuzzy 2-means applied to chrominance layers of the image.
Název v anglickém jazyce
A comparative study on chrominance based methods in dorsal hand recognition: Single image case
Popis výsledku anglicky
Dorsal hand recognition is a crucial topic in biometrics and human-machine interaction; however most of the identification systems identify and segment the hands from the images consisting of high contrast backgrounds. In other words, capturing and analyzing images of hands on a white or black or any colored background is way too easy to achieve high accuracy. On the contrary, in continuous authentication or in interactive human-machine systems, it can be not possible nor feasible to process high contrast images, like hands on computer keyboards which is not as simple as single color backgrounds even the feature to be extracted is solely the hand color. Therefore we deal with processing of the images consisting of hands on computer keyboards to compare various luminance and chrominance methods by YCbCr color space extraction and to find ways to achieve higher accuracy without any succeeding erosion, dilation or filtering. The methods focused on chromatic intervals could be summarized as: fixed intervals, covariance intervals and fuzzy 2-means. Our main contribution briefly is a necessary accuracy comparison and validation of the common methods on the single images. The highest accuracy is found as 96% by fuzzy 2-means applied to chrominance layers of the image.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture notes in computer science
ISBN
978-3-319-92057-3
ISSN
0302-9743
e-ISSN
neuvedeno
Počet stran výsledku
11
Strana od-do
711-721
Název nakladatele
Springer
Místo vydání
Cham
Místo konání akce
Montreal
Datum konání akce
25. 6. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—